
Course C++, Exercise 2

Deadline: 10 March 2015

Topic of this exercise is the general structure of a C++ program. You have to
create a program that consists of different files, and use make to compile it.
Make a separate directory for the task.

1. Download the files rational.h, rational.cpp, vector.h, matrix.h, ma-

trix.cpp and main.cpp from
http://www.ii.uni.wroc.pl/~nivelle/teaching/cpp2014/. There is
also a Makefile that you can use. Make sure that you understand what
is in this Makefile.

2. The usual structure of a C++ program is as follows: Each class has two
files, a file class.h and a file class.cpp. The .h file contains the decla-
rations of the fields, and the declarations of the methods. The .cpp file
contains the actual implementations of the methods.

My experience is that nearly all code belongs to some class. If some code
does not belong to a class, you should still make two files for it. Don’t
invent artificial class names.

The .cpp files are compiled separately. This is important, so we insist
on this from the beginning. Each .cpp file is compiled separately into
a .o file. When all .o files are created, they are combined into a single,
executable file. This process is called linking. The task of the linker is
to check for identifiers that are used in one of the .o files, and that are
defined in another file. When such identifiers exist, they are replaced by
the address reference. If the linker cannot find a definition, it will produce
an (generally incomprehensible) error message.

When you type ’make’, you get a wall of linker errors. We deal with this
in the next task. Still it should be possible to type make matrix.o and
compile the matrix class.

3. The linker errors are caused by methods that are declared in rational.h,
but not defined in rational.cpp. Complete the missing functions.

4. Now it should be possible to run the complete program. Compute
(

1

2

1

3

−
2

7

2

8

)

×

(

−
1

3

2

7
2

5
−

1

7

)

.

1



Compute the inverse of
(

1

2

1

3

−
2

7

2

8

)

5. Verify by example the following:

• Matrix multiplication is associative:

(m1.m2).m3 = m1.(m2.m3).

• Matrix multiplication corresponds to composition of application:

m1(m2(v)) = (m1.m2)(v).

(Use the == operator to compare the results.)

• Determinant commutes over multiplication:

det(m1).det(m2) = det(m1.m2).

• Inverse is indeed inverse:

m.inv(m) = I.

2


