Course C^{++}, Exercise 2

Deadline: 10 March 2015

Topic of this exercise is the general structure of a $\mathrm{C}++$ program. You have to create a program that consists of different files, and use make to compile it. Make a separate directory for the task.

1. Download the files rational.h, rational.cpp, vector.h, matrix.h, matrix.cpp and main.cpp from
http://www.ii.uni.wroc.pl/~nivelle/teaching/cpp2014/. There is also a Makefile that you can use. Make sure that you understand what is in this Makefile.
2. The usual structure of a C^{++}program is as follows: Each class has two files, a file class.h and a file class.cpp. The .h file contains the declarations of the fields, and the declarations of the methods. The .cpp file contains the actual implementations of the methods.
My experience is that nearly all code belongs to some class. If some code does not belong to a class, you should still make two files for it. Don't invent artificial class names.
The .cpp files are compiled separately. This is important, so we insist on this from the beginning. Each .cpp file is compiled separately into a .o file. When all .o files are created, they are combined into a single, executable file. This process is called linking. The task of the linker is to check for identifiers that are used in one of the .o files, and that are defined in another file. When such identifiers exist, they are replaced by the address reference. If the linker cannot find a definition, it will produce an (generally incomprehensible) error message.
When you type 'make', you get a wall of linker errors. We deal with this in the next task. Still it should be possible to type make matrix.o and compile the matrix class.
3. The linker errors are caused by methods that are declared in rational.h, but not defined in rational.cpp. Complete the missing functions.
4. Now it should be possible to run the complete program. Compute

$$
\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{3} \\
-\frac{2}{7} & \frac{2}{8}
\end{array}\right) \times\left(\begin{array}{ll}
-\frac{1}{3} & \frac{2}{7} \\
\frac{2}{5} & -\frac{1}{7}
\end{array}\right) .
$$

Compute the inverse of

$$
\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{3} \\
-\frac{2}{7} & \frac{2}{8}
\end{array}\right)
$$

5. Verify by example the following:

- Matrix multiplication is associative:

$$
\left(m_{1} \cdot m_{2}\right) \cdot m_{3}=m_{1} \cdot\left(m_{2} \cdot m_{3}\right)
$$

- Matrix multiplication corresponds to composition of application:

$$
m_{1}\left(m_{2}(v)\right)=\left(m_{1} \cdot m_{2}\right)(v)
$$

(Use the == operator to compare the results.)

- Determinant commutes over multiplication:

$$
\operatorname{det}\left(m_{1}\right) \cdot \operatorname{det}\left(m_{2}\right)=\operatorname{det}\left(m_{1} \cdot m_{2}\right)
$$

- Inverse is indeed inverse:

$$
m \cdot \operatorname{inv}(m)=I
$$

