
Process of Compilation

Program development proceeds as follows:

1. Edit the program in some text editor. The result is a text file.

2. Compile this text file into machine code.

3. Run the resulting machine code.

1

Interpretation versus Compilation

Some languages, must notably Java and C# use interpreters.

The compiler does not compile into native machine code, but into

an intermediate code. (Java Byte Code).

1. Programmer writes program in some text editor.

2. Compiler translates into Java Byte Code.

3. Interpreter (Java Virtual Machine) reads the Java Byte Code,

and executes its instructions. (You can guess that the JVM

conists mostly of ’ifs’ of the form ‘if next instruction is ... then

do ...’. Interpretation is necessarily slower than native code. It

also uses more memory, and more energy.

4. Modern implementations of JVM combine interpretation with

compilation. I don’t know how efficient this is.

5. Main advantage of interpretation is higher portability.

2

Separate Compilation

• Compilation can be quite time consuming for big programs,

even on a fast computer.

• Different parts of a program are written by different people.

• Some contributors may want to hide their sources from you.

Because of this, we have separate compilation.

3

Separate Compilation (2)

• Program consists of different text files, which can be edited

separately.

• For each of the files separately, an object file is created. (They

have extension .o in Linux, .obj in Windows.) You can use

nm filename.o --demangle to see what is inside an object file.

• The linker collects all object files, fills in the cross references

(mostly addresses of function calls) and creates a single

executable file. (No extension in linux, .exe extension in

Windows.)

4

Separate Compilation (3)

Unfortunately, completely separate compilation is impossible.

File rational.cpp defines rational numbers and operations on

them.

Another file, matrix.cpp defines a matrix as an array of rationals,

and defines operations on matrices.

Main file uses matrices and rationals.

• When producing a local variable of some user defined type, the

compiler needs to know how much space to reserve.

• When compiling v.x, the compiler needs to know that v has a

field x, and which type it has. (and the offset if also useful)

• When compiling a function call f(m1,..,mn) the compiler

needs to know that f exists, and what types it expects and

returns.

5

file.h versus file.cpp

Every program file must be split into two files: file.h contains:

• Declarations of available types (classes and structs).

• Declarations of available functions.

• Definitions of small functions that are inlined. Inlining means

that the compiler replaces the function call by its definition.

This is useful for small functions that are called very often.

The rest stays in file file.cpp.

6

Including

The method for reading the necessary .h files is as primitive as you

can imagine. Write #include "file.h" at the top of your .cpp

file, for every file whose declararations you need. (For system

defined files, it is #include <library>)

It you have nested dependencies, then it is quite possible that the

same file gets included twice, which is not good. (The number can

easily grow exponentially.)

(For example, main may use rational.h and matrix.h, which in

turn uses rational.h.

In order to avoid this, include guards are used.

7

#ifndef MATRIX_INCLUDED

#define MATRIX_INCLUDED 1

// Name must be unique and in capitals.

#include "rational.h"

struct matrix

{

rational repr[2][2];

};

matrix operator * (matrix m1, matrix m2);

matrix operator * (rational r, matrix m);

matrix operator + (matrix m1, matrix m2);

// Declare a lot of operators.

};

#endif

8

Linking

The linker collects all the .o files, and makes a complete program

from it.

It looks for functions that are called in one of the files, and tries to

find a definition in one of the other files.

If the linker cannot find a definition, you will get an error message

that is rather unpleasant:

test.o: In function ‘rational::rational(int, int)’:

test.cpp:(.text._ZN8rationalC2Eii[_ZN8rationalC5Eii]+0x2d):

undefined reference to ‘rational::normalize()’

collect2: error: ld returned 1 exit status

9

Possible Causes of Link Errors

Link errors appear when you declare a function in one of the .h

files (the compiler now believes that the function exists), but don’t

define it in any of the .cpp files.

It may also happen that you forgot to pass one of the .o files to the

linker.

Another possibility is that the type of the definition slightly differs

from the type of the declaration. (Usually wrong constness,

reference or different namespace).

10

Make

If you edit a .cpp file, then only its corresponding .o file needs to be

recompiled.

If you edit a .h file, only the the .o files of the .cpp files that

#include it, need to be recompiled.

make sorts this out automatically.

11

Makefile

program: f1.o f2.o f3.o

g++ -o program f1.o f2.o f3.o

f1.o: f1.cpp f2.h f3.h

g++ -c f1.cpp -o f1.o

f2.o: f2.cpp f1.h f3.h

g++ -c f2.cpp -o f2.o

Specify for each file that the compiler/linker constructs, the files

from which it is constructed.

After that, give the command that does the construction. (The 8

spaces are a Tab.)

The linker is also called g++.

12

Revision/Version Control

In case more than one person works on the same project, different

people may have different versions of the sources.

Keeping the sources consistent may get pretty difficult.

Usually, one programmer does not want that others use unfinished

versions of his sources. So he makes a local copy, works on some of

the sources, and shares his sources only when they are finished.

This is called commit.

Since many programmers may be doing this at the same time, it is

useful to automate the revision control.

13

Revision Control Systems

• keep previous versions of the sources, for the case that some

improvement turns out not an improvement, or an error is

introduced.

• keep different versions of sources, e.g. one for experimenting,

and one reliable versions. Sometimes the complete program is

sold in different versions.

• check when different users commit conflicting changes. Some

systems automatically or semi-automatically merge the

differences.

I do not have any experience with such systems, but you must

know that they exist. Often used systems are Git and CVS.

14

Types of Variables

C++ has many types of variables, which is confusing to many

people. We have seen before that the default behaviour for

assignment, initialization and parameter passing in C++ is copying.

This ensures that different variables are independent of each other,

which makes the program easier to understand, and close to logical

semantics.

Sometimes you don’t want to copy for two possible reasons: A

function must be able to change a variable, and copying large

objects can be inefficient.

A reference is a short-lived variable that doesn’t have a contents of

its own, but which shares its contents with another variable.

References can be used for parameter passing and for abbreviating

large variable expressions.

15

Use of References in Parameter Passing

matrix operator + (const matrix& m1, const matrix& m2);

// There is no need to make a copy of matrix m1, m2

// in order to add them. The ‘const‘ keyword indicates

// that the reference will never change the value

// it refers to.

std::ostream& operator << (std::ostream& stream,

const matrix& m);

// Similarly, there is no need to copy a matrix

// in order to print it.

If you have function a parameter that could be copied in principle,

but you worry about efficiency, then use const&.

16

Use of References in Parameter Passing

void operator += (matrix& m1, const matrix& m2);

// The += operator adds the second matrix to the

// first. The second parameter could be just ’m2’

// but that would be inefficient, so we made it

// const reference.

// The first parameter must be a reference,

// because += must be able to change it.

If you want a function to be able to change something through one

of its parameters, then use & without const.

Note that nearly always it is better to return a value, than to

modify a parameter. If you decide to modify a parameter, it must

be very visible from the function name. (Above it is +=).

17

Use of References as Abbreviation

Sometimes, variable expressions are long and repeated:

for(size_t i = 0; i < 100; ++ i)

for(size_t j = 0; j < 100; ++ j)

p [i][j]. field = p[i][j]. field + 1.0;

==>

for(size_t i = 0; i < 100; ++ i)

for(size_t j = 0; j < 100; ++ j)

{

double& d = p[i][j]. field;

d = d + 1.0;

}

18

If you decide to use a reference, don’t mix it with the original

expression. (Don’t write

p[i][j] = d + p[i][j];

)

If you want to make clear that you will not change the value, use

const&.

19

Rvalue References

Dilemma:

matrix inverse(const matrix& m);

// No copying. Efficient, but we cannot change m

// during computation.

matrix inverse(matrix m);

// Copying. More costly, but we can use m as

// scratch area during computation.

Another type of reference: We take a reference to some variable,

and the reference is the last user of the current value of the variable.

matrix inverse(matrix&& m);

// Not copied, but we can use m as scratch.

// Nobody cares, because we are its last user.

20

Rvalue References (2)

Rvalue references can be used when main variable either gets

overwritten, or goes out of scope:

{

matrix m1 = ...

std::cout << inverse(m1);

// m1 is going to be overwritten.

{

matrix m2 = ...

m1 = inverse(m2);

// m2 goes out of scope.

}

}

Don’t worry about Rvalue references now. We will come back to

them later.

21

Pointers and Iterators

Other forms of sharing variables are:

• Pointers: A pointer can be nullptr (not refering to anything at

all), or share with different variables during its life time.

Pointers are also used to create objects on the heap. (Not in a

local variable.) This may cause memory leaks. We will discuss

this delicate topic later.

• Iterators: An iterator always shares with an element of a

container. (array, hashmap, vector, list). Iterators are a

convenient way of accessing elements of a container. For many

container types, they are the preferred way of reaching the

elements. Iterators should be preferred over pointers.

22

Classes

Class = Representation + Invariants + Equivalences.

Suppose that we want to implement rational numbers of form p

q
.

A rational number can be represented by a pair of integers (p, q).

(p, q) and (pn, qn) represent the same number.

• Either we use an invariant, that p, q have no common factors

and q ≥ 0. In that case we do not need equivalences.

• Or we use no invariant, and we design our class in such a way

that (p, q) and (pn, qn) are indistinguishable. In that case we

don’t need an invariant.

23

Constructors

Methods with the same name as the class they occur in, are called

constructors. The task of the constructors is to establish the class

invariants.

If you provide constructors for a class, it is impossible to obtain

class objects in other ways. Every function that constructs a class

object, eventually will have to call a constructor.

If you write a few constructors, and manage to get them right, class

invariants are guaranteed.

(Assuming of course, that other methods do not mess up.)

24

Constructors can have any types of arguments, but a few

constructors are special:

• The default constructor has no arguments. It is automatically

inserted when a variable is declared without initializer.

• A copy constructor has one argument of type const C&, C&&,

or C&. It is automatically inserted when a parameter is

transferred by value to a function.

It may also be used when a function returns a value.

25

Assignment versus Initialization

In C++, there is distinction between initialization and assignment.

{

rational r = rational(1, 2); // Initialization.

r = rational(3,4); // Assignment.

}

In the first case, variable r is initialized for the first time. In the

second time, an existing value is overwritten.

This distinction is important, because in the case of assignment,

the old object may hold resources that need to be returned to the

system.

26

Static Member Functions

Static functions are functions that do not have access to the fields

of the class.

Because of this, they can be called without class object.

There are two reasons to have such functions:

1. The function is very much connected to the class.

2. The function acts as additional constructor. For example,

matrix has no natural default, because there two natural

candidates, unit matrix and zero matrix.

In such case, one can use static functions matrix::zero()

and matrix::unit().

27

