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Abstract
The CPS hierarchy of Danvy and Filinski is a hierarchy of continua-
tions that allows for expressing nested control effects characteristic
of, e.g., non-deterministic programming or certain instances of nor-
malization by evaluation. In this article, we present a comprehen-
sive study of a typed version of the CPS hierarchy, where the typing
discipline generalizes Danvy and Filinski’s type system for control
operators shift and reset. To this end, we define a typed family of
control operators that give access to delimited continuations in the
CPS hierarchy and that are slightly more flexible than Danvy and
Filinski’s family of control operators shifti and reseti, but, as we
show, are equally expressive. For this type system, we prove sub-
ject reduction, soundness with respect to the CPS translation, and
termination of evaluation. We also show that our results scale to a
type system for even more flexible control operators expressible in
the CPS hierarchy.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Languages Constructs and Features—Control Structures;
F.3.3 [Logics and Meanings of Programs]: Studies of Program Con-
structs

General Terms Languages, Theory

Keywords Delimited Continuation, CPS Hierarchy, Type System

1. Introduction
In the recent years delimited continuations have been recognized
as an important concept in the landscape of eager functional pro-
gramming, with new practical [15, 16, 18, 19], theoretical [1, 2,
4, 13, 20, 24, 27], and implementational [17, 21] advances in the
field. Of the numerous control operators for delimited continua-
tions, the so-called static control operators shift and reset intro-
duced by Danvy and Filinski in their seminal work [8] occupy a
special position, primarily due to the fact that their definition has
been based on the well-known concept of the Continuation-Passing
Style (CPS) [23]. As such, shift and reset have solid semantic foun-
dations [5, 8, 10], they are fundamentally related to other computa-
tional effects [10, 11] and their use is guided by CPS [5, 8]. A typi-
cal application of shift and reset, motivating their definition, are al-
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gorithms that non-deterministically generate elements of some col-
lection, based on the success-failure continuation model of back-
tracking [8].

When iterated, the CPS translation leads to a hierarchy of con-
tinuations, generalizing the concept of the continuation and meta-
continuation used to define the semantics of shift and reset. In terms
of so defined CPS hierarchy, Danvy and Filinski proposed a hier-
archy of control operators shifti and reseti (i ≥ 1) that generalize
shift and reset, and that make it possible to separate computational
effects that should exist independently in a program [8]. For ex-
ample, in order to collect the solutions found by a backtracking
algorithm implemented with shift1 and reset1, one has to employ
shift2 and reset2, so that there is no interference between search-
ing and emitting the results of the search. The CPS hierarchy was
also envisaged to account for nested computations in hierarchical
structures. Indeed, as shown by the first two authors and Danvy [5],
the hierarchy naturally accounts for normalization by evaluation al-
gorithms for hierarchical languages of units and products, general-
izing the problem of computing disjunctive or conjunctive normal
forms in propositional logic.

So far, the CPS hierarchy has been studied mainly in the un-
typed setting. Danvy and Filinski defined it in terms of an untyped
CPS translation and a valuation function of a denotational seman-
tics [8], Danvy and Yang introduced an operational semantics for
the hierarchy and built an SML implementation of the hierarchy
based on this semantics [9], Kameyama presented an axiomatiza-
tion for the hierarchy that is sound and complete with respect to
the CPS translation [14], and Biernacka et al. derived abstract ma-
chines and reduction semantics for the hierarchy from the defini-
tional evaluator [5].

A byproduct of Danvy and Yang’s implementation in ML is
a rather restrictive type system for the hierarchy, where at each
level, the answer type of the continuation is fixed once and for all.
This type system generalizes Filinski’s type system for shift and
reset [10], but it has not been investigated on a formal ground. For-
mal type systems for the hierarchy appear in Murthy’s [22] and in
Shan’s [25] work. Murthy proposes a more relaxed typing disci-
pline than that of Danvy and Yang in that it allows the delimited
continuations of level i to have varying answer types, provided the
answer type agrees with the type expected by the continuation at
level i + 1. Shan’s type system, in turn, generalizes Danvy and
Filinski’s type system [7] which is the most expressive monomor-
phic type system for shift and reset. In Danvy and Filinski’s type
system, control effects can modify the answer type of the context
(i.e., a first-order representation of the continuation) in which they
occur, so statically, the answer type of the continuation at level i
can be different from the argument type of the continuation at level
i+1. Shan’s work is driven by applications in linguistic theory and
the hierarchy he considers is organized differently from the origi-
nal CPS hierarchy of Danvy and Filinski (level 0 in his hierarchy is
the highest whereas it is the lowest in the original hierarchy). Fur-



thermore, no metatheoretic properties of the presented system are
considered in Shan’s work.

In this article, we propose a type system which also general-
izes Danvy and Filinski’s type system but which has been derived
directly from the iterated CPS translation that defines the original
CPS hierarchy. Furthermore, the control operators we consider are
slightly more flexible, although equally expressive, than the origi-
nal shifti and reseti family in that they capture the subsequent con-
tinuations to separate continuation variables and allow for throwing
to tuples of continuations, where the continuations may come from
different captures. Such control operators arise naturally from the
structure of CPS if one considers the operations of capturing con-
tinuations and throwing to captured continuations independently.

We would like to stress that it is our intention not to limit the
type system for control operators in the CPS hierarchy in any way
and to offer the programmer the full power of the simply-typed
CPS, even though the resulting type system is rather complex. One
of the goals of this work is precisely to explain the most naturally
typed version of the CPS hierarchy as it is. Moreover, it has al-
ready been observed by Shan [25] that the most general types à
la Danvy and Filinski are necessary in some practical applications,
for instance, to deal with quantifier scope ambiguity in linguistics.
Also, there exist examples that require answer type modification at
the first level of the hierarchy, for instance, listing list prefixes [5]
or the printf function [2], and there are potentially many more that
live higher in the hierarchy waiting to be discovered. A typical sce-
nario in which a mismatch between the answer type at level i and
the type expected at level i + 1 may arise involves a rather stan-
dard operation when programming in CPS—aborting computation
of type α at level i and returning a value of a different type β to
level i+ 1.

The overall goal of this article is to establish type-theoretic
foundations of the CPS hierarchy and to build a general framework
for studying typed control operators definable in the CPS hierarchy.
The contributions of this work can be summarized as follows:

• the definition of a new family of control operators in the CPS
hierarchy that are slightly more flexible than the shifti and
reseti family, given in terms of a CPS translation and reduction
semantics provably sound with respect to the CPS translation
(Sections 3.1 and 3.2);

• a type system à la Danvy and Filinski for the proposed opera-
tors, with proofs of subject reduction and soundness of the typ-
ing with respect to the CPS translation (Section 3.3);

• a proof of termination of evaluation in reduction semantics,
using a context-based method of reducibility predicates (Sec-
tion 3.4);

• a simulation of the presented operators with the original family
of shifti and reseti (Section 3.5);

• a generalization of the presented results to a hierarchy of even
more flexible control operators expressible in the CPS hierarchy
(Section 4).

2. A Programming Example
Before proceeding to the proper part of the present article, let us
briefly discuss a representative example of programming in the
CPS hierarchy. A typical application of the CPS hierarchy is non-
deterministic programming with two layers of continuations (suc-
cess and failure) on top of which there is some mechanism emitting
or collecting the generated objects [8]. In order to separate search-
ing for solutions from collecting them one uses shift1/reset1 for the
former and shift2/reset2 for the latter. Here are the definitions of the
standard backtracking primitives written in SML, using Danvy and
Yang’s implementation of the CPS hierarchy [9]:

fun fail ()
= shift_1 (fn k => ())

fun amb c1 c2
= shift_1 (fn k =>

(reset_1 (fn () => k (c1 ()));
reset_1 (fn () => k (c2 ()))))

fun emit v
= shift_2 (fn k => v :: (k ()))

fun collect c
= reset_2 (fn () =>

let val () = reset_1 (fn () => emit (c ()))
in nil end)

Given the types of shift i and reset i:

shift_i : ((’a -> ans_i) -> ans_i) -> ’a
reset_i : (unit -> ans_i) -> ans_i

for fixed types ans i for each i, if we fix ans 1 to unit and ans 2

to int list list we can, for example, write a program that lists
list prefixes as follows:

fun prefixes xs
= let fun walk nil

= fail ()
| walk (x :: xs)

= amb (fn () => x :: nil)
(fn () => x :: (walk xs))

in collect (fn () => walk xs) end

The semantics of the control operators shifti/reseti is given
by an iterated CPS translation, where the number of iterations is
greater than i [8]. So, in order to see what is going on in the above
code, let us CPS transform the backtracking primitives and the
function prefixes using three layers of continuations (η-reducing
them where possible to avoid clutter):

fun fail () k1 k2
= k2 ()

fun amb c1 c2 k1 k2
= c1 () k1 (fn () => c2 () k1 k2)

fun emit v k1 k2
= k1 ()

(fn () => fn k3 =>
k2 () (fn u => k3 (v :: u)))

fun collect c
= c ()

(fn v => emit v (fn u => fn k2 => k2 u))
(fn () => fn k3 => k3 nil)
(fn vs => vs)

fun prefixes xs
= let fun walk nil

= fail ()
| walk (x :: xs)

= amb (fn () => fn k1 => k1 (x :: nil))
(fn () =>

fn k1 => walk xs
(fn vs => k1 (x :: vs)))

in collect (fn () => walk xs) end

In this model of backtracking the first level serves to generate
the current solution, the second level remembers non-deterministic-
choice points, and the third level is responsible for storing the
generated solutions. Since in the above example there is always
at most one choice point, we can write its simpler version, where
the second level collects the prefixes and, therefore, the third level
is not needed any more [5]:



fun prefixes xs
= let fun walk nil k1 k2

= k2 nil
| walk (x :: xs) k1 k2

= k1 (x :: nil)
(fn vs =>

walk xs (fn vs => k1 (x :: vs))
(fn vss => k2 (vs :: vss)))

in walk xs (fn vs => fn k2 => k2 vs)
(fn vss => vss) end

This simplification has an interesting consequence for the types
of the continuations used in this program. We can observe that
while the answer type of k1 is int list, the argument type of k2
is int list list. We face here a phenomenon known as answer-
type modification [2, 5, 7], i.e., a continuation of answer type int

list is used through a control effect to construct a value of type
int list list. A direct-style counterpart of this program is the
following familiar function [5]:

fun prefixes xs
= let fun walk nil

= shift_1 (fn k => nil)
| walk (x::xs)
= shift_1

(fn k =>
(k (x :: nil)) ::
(reset_1 (fn () => k (x :: (walk xs)))))

in reset_1 (fn () => walk xs) end

Due to the answer-type modification, this program type-checks
neither in Danvy and Yang’s type system [9] nor in Murthy’s
type system [22]. It requires a type system à la Danvy and Fil-
inski [7, 25], where programs have types derived from their CPS
semantics and where computations can modify the answer type of
continuations. The rest of this article is devoted to such a type sys-
tem.

3. Flexible Control Operators
In this section, we present a hierarchy of flexible delimited-control
operators and we define a type system for it. We then show that
it enjoys the standard correctness properties, such as subject reduc-
tion, soundness with respect to the CPS translation, and termination
of evaluation. We also discuss the link between these operators and
the original hierarchy of control operators due to Danvy and Filin-
ski [8].

3.1 Syntax
The language of terms at an arbitrary level n of the hierarchy
extends the usual lambda terms with delimited-control operators
capture Ln, reset 〈·〉n, and throw←↩n, for n ∈ N+. At any level n,
all operators inherited from lower levels j < n are also available. In
the following, we assume we have a set of term variables, ranged
over by x, separate from n pairwise disjoint sets of continuation
variables, ranged over by k1, . . . , kn. The syntax of terms at level
n is defined as follows (where 1 ≤ i ≤ n):

t ::= x | λx.t | t t | Li(k1, . . . , ki).t | 〈t〉i |
(h1, . . . , hi)←↩i t

hi ::= ki | pEiq
v ::= λx.t

and the syntax of (call-by-value) evaluation contexts is given by
(where 2 ≤ i ≤ n+ 1):

E1 ::= •1 | v E1 | E1 t | (pE1q, . . . , pEiq)←↩i E1

Ei ::= •i | Ei.Ei−1

Li(k1, . . . , ki).t are capture operators, each 〈·〉i delimits the scope
of the corresponding capture operator, and the throw constructs
(h1, . . . , hi) ←↩i t (similar to that of SML/NJ [12]) are used for
applying a tuple of continuation variables or evaluation contexts to
a term (or, throwing the term to the tuple).

In the original hierarchy of control operators [8], the shifti con-
struct Sik.t binds only one continuation variable instead of a tu-
ple, and continuations are applied as regular functions, without any
throw construct. Independently from this work, a throw construct

k
S←↩i t can be introduced to distinguish continuation applications

in the original hierarchy for typing purposes, as discussed in [4]
(and in Section 3.3). Translating a term written with operators Si
and

S←↩i to fit our system amounts to replacing singular variables
k by tuples of continuation variables of size i.

In a source program, a term can be thrown only to a tuple of
continuation variables (k1, . . . , ki), and the programmer does not
handle evaluation contexts explicitly. However, they can be intro-
duced during evaluation, when some of the variables k1, . . . , ki are
replaced by contexts captured by an operatorLj . Therefore, we dis-
tinguish plain terms, i.e., terms that contain only throw constructs
of the form (k1, . . . , ki)←↩i t.

An abstraction λx.t binds x in t and a capture construct
Li(k1, . . . , ki).t binds the variables k1, . . . , ki in t. The sets of
free term and continuation variables are defined as usual, and we
say a term is closed if it does not contain any free variables of
any kind. A context is closed if and only if all terms occurring in
it are closed. We equate terms up to α-conversion of their bound
variables.

Contexts Ei can be seen as terms with a hole. We repre-
sent contexts inside-out, i.e., •1 represents the empty context
of level 1, v E1 represents the “term with a hole” E1[v [ ]],
E1 t represents E1[[ ] t], and (pE1q, . . . , pEiq) ←↩i E ′1 rep-
resents E ′1[(pE1q, . . . , pEiq) ←↩i [ ]]. A context of level i for
i = 2, . . . , n + 1 is a stack of contexts of level i − 1 separated
by a delimiter 〈·〉i−1. Therefore the empty context •i of level i
stands for the term with a hole 〈[ ]〉i−1, and Ei.Ei−1 represents
Ei[〈Ei−1[ ]〉i−1]. Formally, the function plug i (1 ≤ i ≤ n + 1)
gives the term obtained by putting a term t within a context Ei. We
define plug1 as follows:

plug1 (t, •1) = t

plug1 (t, v E1 ) = plug1 (v t,E1 )

plug1 (t0,E1 t1) = plug1 (t0 t1,E1 )

plug1 (t, (pE1q, . . . , pEiq)←↩i E ′1) =

plug1 ((pE1q, . . . , pEiq)←↩i t,E ′1)

and for i = 2, . . . , n+ 1 we define:

plug i (t, •i) = t

plug i (t,Ei.Ei−1) = plug i (〈plug i−1 (t,Ei−1)〉i−1,Ei)

We write Ei[t] for the term plug i (t,Ei).
We choose the inside-out representation of contexts (rather than

the outside-in representation) because inside-out contexts arise
naturally as defunctionalized continuations, i.e., they are first-
order counterparts of continuations seen as higher-order functions.
Consequently, continuations can be obtained by refunctionalizing
inside-out contexts, as shown in Figure 1.

In the following, we represent terms as programs in order to
keep the layers of contexts delimited by the reset operators 〈·〉i
explicit. Such a representation is useful when writing reduction
rules, where we have to decompose a term and locate its redex.
It is also well suited for defining reducibility predicates to prove
termination of well-typed terms (cf. Section 3.4).



CPS translation of terms

x = λk1 . . . kn+1.k1 x k2 . . . kn+1

λx.t = λk1 . . . kn+1.k1 (λxk′1k
′
2 . . . k

′
n+1.t k

′
1 k
′
2 . . . k

′
n+1) k2 . . . kn+1

t0 t1 = λk1 . . . kn+1.t0 (λv0k
′
2 . . . k

′
n+1.t1 (λv1k

′′
2 . . . k

′′
n+1.v0 v1 k1 k

′′
2 . . . k

′′
n+1) k′2 . . . k

′
n+1)

k2 . . . kn+1

〈t〉i = λk1 . . . kn+1.t θ1 . . . θi(λv0k
′
i+2 . . . k

′
n+1.k1 v0 k2 . . . ki+1 k

′
i+2 . . . k

′
n+1) ki+2 . . . kn+1

Li(k′1, . . . , k′i).t = λk1 . . . kn+1.t{k1/k′1, . . . , ki/k′i} θ1 . . . θi ki+1 . . . kn+1

(h1, . . . , hi)←↩i t = λk1 . . . kn+1.t (λv0k
′
2 . . . k

′
n+1.[[h1]] v0 [[h2]] . . . [[hi]](λv1k

′′
i+2 . . . k

′′
n+1.k1 v1 k

′
2 . . . k

′
i+1 k

′′
i+2 . . . k

′′
n+1)

k′i+2 . . . k
′
n+1) k2 . . . kn+1

where θi = λxki+1 . . . kn+1.ki+1 x ki+2 . . . kn+1 for i = 1, . . . , n

Refunctionalization of contexts

[[ki]] = ki

[[•i]] = θi

[[E1 t]] = λv0k2 . . . kn+1.t (λv1k
′
2 . . . k

′
n+1.v0 v1 [[E1 ]] k′2 . . . k

′
n+1) k2 . . . kn+1

[[v0 E1 ]] = λv1k2 . . . kn+1.v0
∗ v1 [[E1 ]] k2 . . . kn+1

[[(pE1q, . . . , pEiq)←↩i E ′1]] = λv0k2 . . . kn+1.[[E1 ]] v0 [[E2]] . . . [[Ei]] (λv1k
′
i+2 . . . k

′
n+1.[[E

′
1]] v1 k2 . . . ki+1 k

′
i+2 . . . k

′
n+1)

ki+2 . . . kn+1

[[Ei.Ei−1]] = λvki+1 . . . kn+1.[[Ei−1]] v [[Ei]] ki+1 . . . kn+1

λx.t∗ = λx.t

Figure 1. CPS translation

Formally, a program at level n of the hierarchy is defined as
follows:

p ::= 〈t,E1 , . . . ,En+1〉.
The program 〈t,E1 , . . . ,En+1〉 represents the term

plugn+1 (〈. . . 〈plug2 (〈plug1 (t,E1 )〉1,E2)〉2 . . .〉n,En+1),

which can also be written as

En+1[〈. . . 〈E2[〈E1 [t]〉1]〉2 . . .〉n].

It can be seen from this definition that each term that we repre-
sent as a program at level n, will be implicitly enclosed by the
reset operators of each level from 1 to n. For example, the term
λx.t will be represented as the program 〈λx.t, •1, . . . , •n+1〉 that
yields 〈. . . 〈λx.t〉1 . . .〉n after plugging. From the operational point
of view, such a sequence of delimiters surrounding a term is su-
perfluous, since it is enough to replace them by the reset of the
highest level. Therefore we introduce another definition of the plug
function—one that introduces fewer delimiters—defined on pro-
grams, which is shown in Figure 2. The idea is that the new plug
function when operating on entire programs can detect sequences
of empty contexts when it is enough to introduce only one delim-
iter of the highest level, rather than all of them (this behavior is
captured by the last two clauses of plug). This definition relies on
the fact that the first context Ei+1 that is not empty has necessarily
the form Ei+1.(Ei.(. . . (E2.E1) . . .)), as it can only be obtained
by pushing a sequence of contexts from level 1 to i onto Ei+1 (as
a result of decomposition or reduction). We will use this definition
when reconstructing a term from a program. For technical reasons,
also the definitions of plug i functions will be used in the remainder
of the article.

A term (which we consider in its representation as a pro-
gram) can have many different decompositions into the term part

and the context part; consequently different programs can rep-
resent the same term. For example, for n = 2, the program
〈(λx.t) v, •1,E2.E1,E3〉 can be also decomposed as
〈λx.t, •1 v,E2.E1,E3〉, or as 〈〈(λx.t) v〉1,E1,E2,E3〉. We iden-
tify all decompositions of the same term by defining an equivalence
relation on programs, as follows:

p ∼ p′ := plug (p) = plug (p′)

and considering programs up to this equivalence. Informally, the
way to decompose a program is to read the definition of plug from
right to left. In particular, in order to decompose a term enclosed
in a level-i reset, we need to push the current i contexts onto the
level-i + 1 context. For example, the term 〈〈〈t〉1 s〉2, •1, •2, •3〉
can be decomposed into 〈〈t〉1 s, •1, •2, •3. •2 .•1〉 and further into
〈〈t〉1, •1 s, •2, •3.•2 .•1〉 and then into 〈t, •1, •2.•1 s, •3.•2 .•1〉.

3.2 CPS Translation and Semantics
We first define a CPS translation for our language, and then we
derive the reduction semantics from it, using the same approach as
Biernacka et al. [5]. The CPS translation, presented in Figure 1,
extends the standard call-by-value CPS translation for the lambda
calculus, and it uses the function [[·]] which transforms contexts
into continuations they represent (leaving continuation variables
unchanged).

The CPS translation is defined with respect to a fixed (but arbi-
trary) level n of the hierarchy. It means that the control constructs
may interact with up to n surrounding contexts, and consequently,
we introduce n+ 1 layers of continuations in the translation. In the
case when a CPS-translated term does not touch some of its outer
contexts, it results in the introduction of a number of eta redexes
that could be reduced away. However, we prefer to keep them in



plug 〈t, v E1 ,E2, . . . ,En+1〉 = plug 〈v t,E1 ,E2, . . . ,En+1〉
plug 〈t0,E1 t1,E2, . . . ,En+1〉 = plug 〈t0 t1,E1 ,E2, . . . ,En+1〉

plug 〈t, (pE1q, . . . , pEiq)←↩i E ′1,E2, . . . ,En+1〉 = plug 〈(pE1q, . . . , pEiq)←↩i t,E ′1,E2, . . . ,En+1〉
plug 〈t, •1, . . . , •i,Ei+1.(Ei.(. . . (E2.E1) . . .)),Ei+2, . . . ,En+1〉 = plug 〈〈t〉i,E1, . . . ,Ei,Ei+1,Ei+2, . . . ,En+1〉

plug 〈t, •1, . . . , •n+1〉 = 〈t〉n

Figure 2. Plug function for programs at level n

(βv) 〈(λx.t) v,E1 , . . . ,En+1〉 →v 〈t{v/x},E1 , , . . . ,En+1〉
(capturei) 〈Li(k1, . . . , ki).t,E1 , . . . ,En+1〉 →v 〈t{pE1q/k1, . . . , pEiq/ki}, •1, . . . , •i,Ei+1, . . . ,En+1〉
(reset i) 〈〈v〉i,E1 , . . . ,En+1〉 →v 〈v,E1 , . . . ,En+1〉
(throw i) 〈(pE ′1q, . . . , pE ′iq)←↩i v,E1 , . . . ,En+1〉 →v 〈v,E ′1, . . . ,E ′i ,Ei+1.(Ei. . . . (E2.E1 ) . . .),Ei+2, . . . ,En+1〉

for 1 ≤ i ≤ n

Figure 3. Reduction rules

order to be uniform, and to exhibit the relationship with the type
system of Section 3.3.

The call-by-value reduction semantics is shown in Figure 3. We
write t{s/x} for the usual capture-avoiding substitution of s for
the variable x in t, and we write t{E1/k1} . . . {Ei/ki} for the si-
multaneous capture-avoiding substitutions of contexts E1 , . . . ,Ei
for variables k1, . . . , ki in t. Terms (λx.t) v are the standard β-
redexes of the call-by-value λ-calculus (the rule (βv)). The reduc-
tion of a term Li(k1, . . . , ki).t within contexts E1 , . . . ,En+1 con-
sists in capturing the first i contexts E1 , . . . ,Ei and substituting
them for the variables k1, . . . , ki (the rule (capturei)). When a
value is thrown to a tuple of contexts (E ′1, . . . ,E

′
i ) using a level-i

throw construct within contexts E1 , . . . ,En+1, then the new con-
texts E ′1, . . . ,E ′i are reinstated as the current contexts, and the then-
current contexts E1 , . . . ,Ei are stacked on the context Ei+1 (the
rule (throw i)). Finally, if a value is surrounded by a reset of any
level, then the delimiter is no longer needed and can be removed
using the rule (reset i).

A redex is the first component (a term) of the program occurring
on the left-hand side of each of the reduction rules above. A poten-
tial redex is either a proper redex or a stuck term, i.e., a term that
neither is a value nor can be further reduced. The type system we
propose in Section 3.3 ensures that a well-typed program cannot
generate a stuck term in the course of its reduction. Because of the
unique-decomposition property of the calculus, the relation→v is
deterministic.

We define the evaluation relation as the reflexive and transitive
closure of →v. The result of the evaluation is a program value
of the form pv := 〈v, •1, . . . , •n+1〉. Hence, a program value is
a term value surrounded by the (implicit) reset operators 〈·〉i for
i = 1, . . . , n.

PROPOSITION 1 (Unique-decomposition property). For all pro-
grams p, p either is a program value, or it decomposes uniquely
into contexts E1 , . . . ,En+1 and a potential redex r such that

p = 〈r,E1, . . . ,En+1〉.

Note that the semantics of the original shifti can be retrieved by
allowing only throws to tuples E1, . . . ,Ei captured by an operator
Li(k1, . . . , ki).t, i.e., by forbidding throws to tuples built from
different captures or to tuples of size i built from a capture of size
j > i.

Let us illustrate the evaluation with an example. Consider
the program 〈(L2(k1, k2).(k1, k2)←↩2 〈v〉1) (λx.x), •1, •2, •3〉.

First, we decompose it and locate the redex:

〈L2(k1, k2).(k1, k2)←↩2 〈v〉1, •1 (λx.x), •2, •3〉,
then we reduce it according to rule (capturei) and obtain:

〈(p•1 (λx.x)q, p•2q)←↩2 〈v〉1, •1, •2, •3〉.
Again, we decompose and find the next redex:

〈〈v〉1, (p•1 (λx.x)q, p•2q)←↩2 •1, •2, •3〉.
According to rule (reset i) we reduce it, and decompose again:

〈(p•1 (λx.x)q, p•2q)←↩2 v, •1, •2, •3〉.
Finally, we reduce it to

〈v, •1 (λx.x), •2, •3. •2 .•1〉
according to rule (throw i), and then we decompose it to find the
(βv)-redex which reduces to:

〈v, •1, •2, •3. •2 .•1〉.
Finally, we decompose it to

〈〈v〉2, •1, •2, •3〉
and apply (reset i) again, which yields the result

〈v, •1, •2, •3〉.
We can show that reductions in the hierarchy are sound with

respect to the CPS translation:

PROPOSITION 2 (Soundness of reduction wrt. CPS). If p →v p′,
then p =βη p′.

Proposition 2 is proved using a characterization of the CPS-
image of a program in terms of its CPS-translated components:

PROPOSITION 3 (Characterization of CPS image).
If p = 〈t,E1 , . . . ,En〉, then

p =βη λk1 . . . kn+1.t [[E1 ]] . . . [[En]](λv0.k1 v0 k2 . . . kn+1) .

Proposition 3 states that the CPS translation of a program is con-
vertible to the CPS term obtained first, by CPS translating the term
component t of the program, then applying it to continuations ob-
tained by refunctionalizing the successive contexts Ei, and finally
applying it to a continuation of the highest level that collects all the
current continuations ki (as a refunctionalized stack of lower-level
contexts/continuations).



Terms (1 ≤ i ≤ n):

Γ, x : S; ∆ `n x : S B C2 . . .B Cn+1, C2, . . . , Cn+1

Γ, x : S; ∆ `n t : C′1, . . . , C
′
n+1 C1 = T B . . .

Γ; ∆ `n λx.t : (S → [C′1, . . . , C
′
n+1]) B C2 . . .B Cn+1, C2, . . . , Cn+1

Γ; ∆ `n t0 : (S → [C1, . . . , Cn+1]) B C′′2 . . .B C′′n+1, C
′
2, . . . , C

′
n+1 Γ; ∆ `n t1 : S B C2 . . .B Cn+1, C

′′
2 , . . . , C

′′
n+1

Γ; ∆ `n t0 t1 : C1, C
′
2, . . . , C

′
n+1

I1(D1) . . . Ii(Di) Γ; ∆ `n t : D1, . . . , Di, (S B Ci+2 . . .B Cn+1), C′i+2, . . . , C
′
n+1

Γ; ∆ `n 〈t〉i : S B C2 . . .B Cn+1, C2, . . . , Ci+1, C
′
i+2, . . . , C

′
n+1

I1(D1) . . . Ii(Di) Γ; ∆, k1 : C1, . . ., ki : Ci `n t : D1, . . . , Di, Ci+1, . . . , Cn+1

Γ; ∆ `n Li(k1, . . . , ki).t : C1, C2, . . . , Cn+1

C1 = S B C2 . . .B Cn+1 Ci+1 = T B C′i+2 . . .B C′n+1

Γ; ∆ `n h1 : C1 . . . Γ; ∆ `n hi : Ci
Γ; ∆ `n t : S B C′′2 B . . . C′′i+1 B Ci+2 B . . . Cn+1, D2, . . . , Dn+1

Γ; ∆ `n (h1, . . . , hi)←↩i t : T B C′′2 B . . . C′′i+1 B C′i+2 B . . . C′n+1, D2, . . . , Dn+1

Contexts and continuation variables:

Ii(Ci) 1 ≤ i ≤ n+ 1

Γ; ∆ `n •i : Ci Γ; ∆, ki : Ci `n ki : Ci

Γ; ∆ `n Ei : Ci Γ; ∆ `n Ei−1 : S B Ci . . .B Cn+1 2 ≤ i ≤ n+ 1

Γ; ∆ `n Ei.Ei−1 : S B Ci+1 . . .B Cn+1

Γ; ∆ `n E1 : C1 Γ; ∆ `n t1 : S B C2 . . .B Cn+1, C
′′
2 , . . . , C

′′
n+1

Γ; ∆ `n E1 t : (S → [C1, . . . , Cn+1]) B C′′2 . . .B C′′n+1

Γ; ∆ `n v : (S → [C1, . . . , Cn+1]) B C′′2 . . .B C′′n+1, C
′′
2 , . . . , C

′′
n+1 Γ; ∆ `n E1 : C1

Γ; ∆ `n v E1 : S B C2 . . .B Cn+1

C1 = S B C2 . . .B Cn+1 Ci+1 = T B C′i+2 . . .B C′n+1

Γ; ∆ `n E1 : C1 . . . Γ; ∆ `n Ei : Ci
Γ; ∆ `n E1

′ : T B C′′2 B . . . C′′i+1 B C′i+2 B . . . C′n+1

Γ; ∆ `n (pE1q, . . . , pEiq)←↩i E1
′ : S B C′′2 B . . . C′′i+1 B Ci+2 B . . . Cn+1

Programs:

Γ; ∆ `n En+1[〈. . .E1 [t] . . .〉n] : S B C2 . . .B Cn+1, C2, . . . , Cn+1

Γ; ∆ `n 〈t,E1 , . . . ,En+1〉 : S

Figure 4. A type system for the level n of the CPS hierarchy

3.3 Type System
We propose a type system for the CPS hierarchy. It is a conservative
extension of the type system given by Biernacka and Biernacki for
the first level of the hierarchy for shift and reset [4], which is itself
a refinement of the classical type system of Danvy and Filinski [7].
The typing rules have been derived from the CPS image of the
language (shown in Figure 1). We assume that we have a set of
base type variables, ranged over by b. We let S, T range over types
for terms, and Ci, Di range over types for contexts Ei, for all
i = 1, . . . , n + 1. The syntax of types for terms and contexts is

given below, where 1 ≤ i ≤ n:

S ::= b | S → [C1, . . . , Cn+1]

Cn+1 ::= ¬S
Ci ::= S B Ci+1 . . .B Cn+1

As in Danvy and Filinski’s system, arrow types contain type
annotations S → [C1, . . . , Cn+1]: a function with such a type
can be applied to an argument of type S within contexts of types



C1, . . . , Cn+1. For n = 1, the Danvy and Filinski’s type S U → V

T corresponds to S → [T B U,¬V ].
In Danvy and Filinski’s original type system, continuations are

treated as regular functions; they are applied without any throw
operator, and they are typed with regular (annotated) arrow types.
As discussed in [4], this approach is too restrictive to type some
interesting examples. In particular, it lacks context answer type
polymorphism, which can be retrieved by representing captured
continuations as contexts, and by using an explicit throw construct.
Following this idea, we assign types to contexts Ci that are not
function types; a context of type S B Ci+1 . . . B Cn+1 can be
plugged with a term of type S, and it can be put within contexts
of types Ci+1, . . . , Cn+1, respectively.

A type environment for term variables Γ is a list of pairs x :S,
and a type environment for continuation variables ∆ is a list of
pairs ki : Ci. We derive typing judgments of the form Γ; ∆ `n
t : C1, . . . , Cn+1 for terms, and typing judgments of the form
Γ; ∆ `n Ei : Ci for contexts. If Γ; ∆ `n t : C1, . . . , Cn+1,
then, under the assumptions Γ, ∆, the term t can be plugged
into contexts of types C1, . . . , Cn+1. We do not need to mention
explicitly the type of the term in the judgment, because we can
retrieve it from the type C1 of the first enclosing context, if needed.
If C1 = S B C′2 . . .B C′n+1, then t is of type S.

Danvy and Filinski’s typing judgment Γ; ∆ | T ` t : S | U
corresponds to the judgment Γ; ∆ `1 t : SBT,¬U in our system.

The typing rules are presented in Figure 4. We now briefly
explain them and sketch how they were derived from the CPS
translation of the language (of Figure 1).

The CPS defining equations are usually of the form op(t) =
λk1 . . . kn+1.t k

′
1 . . . k

′
n+1 for a given operator op, and we want to

generate a typing rule of the form

Γ′; ∆′ `n t : C′1, . . . , C
′
n+1

Γ; ∆ `n op(t) : C1, . . . , Cn+1
.

To this end, we annotate the CPS equation with the most lib-
eral types, and we then deduce the types C1, . . . , Cn+1 from
the types of k1, . . . , kn+1, and C′1, . . . , C′n+1 from the types of
k′1, . . . , k

′
n+1. For example, consider the CPS translation for term

variables:
x = λk1 . . . kn+1.k1 x k2 . . . kn+1

The type of k1 has to match those of x, k2, . . . , kn+1 to make the
application typable. No other constraints on types can be deduced
for this equation, so we can derive the following typing rule for
term variables:

Γ, x : S; ∆ `n x : S B C2 . . .B Cn+1, C2, . . . , Cn+1

Consider now the CPS translation for reset:

〈t〉i = λk1 . . . kn+1.t θ1 . . . θi k
′
i+1 ki+2 . . . kn+1

with

k′i+1 = (λv0k
′
i+2 . . . k

′
n+1.k1 v0 k2 . . . ki+1 k

′
i+2 . . . k

′
n+1)

Assume that we type k1 with SBC2 . . .BCn+1. To be able to type
the continuation k′i+1 we have to assign types C2, . . . , Cn+1 to
continuations k2, . . . , ki+1, k′i+2, . . . , k

′
n+1 and the type S to v0.

Consequently, the continuation k′i+1 has type SBCi+2 . . .BCn+1.
We do not have any constraints on the types of the continuation
ki+2, . . . , kn+1. Finally, we have to assign valid types D1, . . . , Di
to the initial continuations θ1, . . . , θi. Let us recall the definition of
the initial continuation:

θj = λxkj+1 . . . kn+1.kj+1 x kj+2 . . . kn+1.

Therefore, a type Dj = T B D′j+1 . . . B D′n+1 is valid for θj
iff D′j+1 = T B D′j+2 . . . B D′n+1. We check this condition by

defining a family of predicates Ij (1 ≤ j ≤ n) on context types as
follows:

Ij(Cj) := ∃S,Cj+2, . . . , Cn+1.

Cj = S B (S B Cj+2 . . .B Cn+1) B Cj+2 B . . . Cn+1

and In+1(Cn+1) = True. We now have enough information to
write the typing rule for 〈·〉i. Similarly, we derive typing rules for
the remaining term constructors.

The typing rules for contexts can be derived by inspecting
the equations defining the function [[·]]. For example, because [[·]]
translates •i into the initial continuation θi, the empty context
of level i can be typed with any type Ci provided that Ii(Ci)
holds. Note that we use the same typing judgment for continuation
variables Γ; ∆ `n ki : Ci as for contexts; it is just to make the
typing rule for throw easier to write.

We point out that the typing rule for the original shifti Si, (and

for reseti and throw
S←↩i , respectively) is the same as the rule for

Li (and for reseti, throw ←↩i , respectively).
Asai and Kameyama [2] defined a notion of pure term (i.e.,

a term free from control effects) in the polymorphic type system
they designed for the level-1 shift and reset. Using Danvy and
Filinski’s typing judgment, a typable term t is pure iff we can derive
Γ; ∆ |T ` t : S |T for any type T . We can generalize this notion
to an arbitrary level n of the CPS hierarchy. We see that for i = n
the typing rule for reset becomes

I1(D1) . . . In(Dn) Γ; ∆ `n t : D1, . . . , Dn,¬S
Γ; ∆ `n 〈t〉i : S B C2 . . .B Cn+1, C2, . . . , Cn+1

.

We notice that in the conclusion of this rule as well as in the
conclusion of the rules for term variable and lambda abstraction,
the types C2, . . . , Cn+1 are arbitrary, and the type of the first
enclosing context is of the form S B C2 . . . B Cn+1. Therefore,
we say that a typable term t is pure iff we can derive Γ; ∆ `n t :
S B C2 . . .B Cn+1, C2, . . . , Cn+1 for any C2, . . . , Cn+1.

We now state the main properties of the type system. First, we
prove subject reduction: if a program p is typable and reduces to
p′, then p′ is typable with the same type. To this end, we will need
to derive types for t and E1, . . . ,En+1 from the typing judgment
Γ; ∆ `n 〈t,E1, . . . ,En+1〉 : S. We will need a few lemmas:

LEMMA 1. If Γ; ∆ `n E1 [t] : D1, C2, , . . . , Cn+1 and I1(D1)
hold, then Γ; ∆ `n E1 [〈t〉1] : C1, C2, . . . , Cn+1 and Γ; ∆ `n
E1 : C1 hold for some C1.

The proof is a straightforward structural induction on E1.

LEMMA 2. For i = 2, . . . , n, the following properties hold:

1. If Γ; ∆ `n Ei[〈t〉i−1] : D1, . . . , Di, Ci+1, . . . , Cn+1 and
Ij(Dj) for all j = 1, . . . , j, then there exists Ci such that
Γ; ∆ `n Ei : Ci and

Γ; ∆ `n t : D′1, . . . , D
′
i−1, Ci, Ci+1, . . . , Cn+1

with Il(D′l) for all l = 1, . . . , i− 1.
2. If Γ; ∆ `n Ei[〈t〉j ] : D1, . . . , Di, Ci+1, . . . , Cn+1, Il(Dl)

holds for all l = 1, . . . , i, and j ≥ i, then

Γ; ∆ `n t : D′1, . . . , D
′
j , SBC′j+2 . . .BC

′
n+1, Cj+2, . . . , Cn+1

with Il(D′l) for all l = 1, . . . , j and

Γ; ∆ `n Ei : S BCi+1 B . . .BCj+1 BC′j+2 B . . .BC′n+1.

The main difficulty in proving subject reduction was to write
down and prove Lemma 2 (and its counterpart for reconstruction,
Lemma 6). The two properties stated in the lemma are proved
simultaneously by induction on i and on Ei.



LEMMA 3. If

Γ; ∆ `n En+1[〈t〉n] : S B C2 . . .B Cn+1, C2, . . . , Cn+1

and En+1 = •n+1.E
1
n. . . . .E

m
n , then

Γ; ∆ `n t : D1, . . . , Dn,¬T
with Il(Dl) for all l = 1, . . . , n, Γ; ∆ `n E1

n : T ′ B ¬S, and
Γ; ∆ `n En+1 : ¬T .

The proof is a straightforward structural induction on En+1. With
these three lemmas, we can decompose a typed program as follows:

LEMMA 4. If Γ; ∆ `n 〈t,E1, . . . ,En+1〉 : S and En+1 =
•n+1.E

1
n. . . . .E

m
n , then there exist C1, . . . , Cn+1 such that

Γ; ∆ `n Ei : Ci for all i = 1, . . . , n + 1, and Γ; ∆ `n t :
C1, . . . , Cn+1. Furthermore, Γ; ∆ `n E1

n : T ′B¬S is derivable
for some T ′.

We now state auxiliary lemmas needed to perform the reverse
operation: from a typed term t and typed contexts E1, . . . ,En+1,
we want to deduce the type of the program 〈t,E1, . . . ,En+1〉.
LEMMA 5. If Γ; ∆ `n t : C1, . . . , Cn+1 and Γ; ∆ `n E1 : C1,
then Γ; ∆ `n E1 [t] : D1, C2, . . . , Cn+1 is derivable and I1(D1)
holds.

LEMMA 6. The following properties hold:

1. If
Γ; ∆ `n t : D1, . . . , Di−1, Ci, . . . , Cn+1,

Il(Dl) hold for all l = 1, . . . , i − 1, and Γ; ∆ `n Ei : Ci,
then

Γ; ∆ `n Ei[〈t〉i−1] : D′1, . . . , D
′
i, Ci+1, . . . , Cn+1

and Il(D′l) hold for all l = 1, . . . , i.
2. If

Γ; ∆ `n t : D1, . . . , Dj , Cj+1, . . . , Cn+1,

Il(Dl) hold for all l = 1, . . . , j,Cj+1 = SBC′j+2 . . .BC
′
n+1,

and

Γ; ∆ `n Ei : S B Ci+1 B . . .B Cj+1 B C′j+2 B . . .B C′n+1,

then

Γ; ∆ `n Ei[〈t〉j ] : D′1, . . . , D
′
i, Ci+1, . . . , Cn+1

and Il(D′l) hold for all l = 1, . . . , i.

LEMMA 7. If Γ; ∆ `n t : D1, . . . , Dn,¬T , Il(Dl) hold for all
l = 1, . . . , n, En+1 = •n+1.E

1
n., . . . . ,E

m
n , Γ; ∆ `n En+1 :

¬T , and Γ; ∆ `n E1
n : T ′ B ¬S, then

Γ; ∆ `n En+1[〈t〉n] : S B C2 . . .B Cn+1, C2, . . . , Cn+1.

LEMMA 8. If Γ; ∆ `n t : C1, . . . , Cn+1, Γ; ∆ `n Ei : Ci
for all i = 1, . . . , n + 1, En+1 = •n+1.E

1
n., . . . . ,E

m
n , and

Γ; ∆ `n E1
n : T ′ B ¬S, then Γ; ∆ `n 〈t,E1, . . . ,En+1〉 : S

is derivable.

As usual, we need a substitution lemma to deal with the (βv)
and (capturei) reduction rules.

LEMMA 9 (Substitution lemma). The following hold:

1. If Γ, x : S; ∆ `n t : C1, . . . , Cn+1 and Γ; ∆ `n v :
S B C′2 . . .B C′n+1, then Γ; ∆ `n t{v/x} : C1, . . . , Cn+1.

2. If Γ; ∆, K : D1 B . . .BDi `n t : C1, . . . , Cn+1 and
Γ; ∆ `n Ej : Dj for all j ∈ 1, . . . , i, then Γ; ∆ `n
t{(E1, . . . ,Ei)/K} : C1, . . . , Cn+1.

Using these lemmas, we can prove subject reduction.

THEOREM 1 (Subject reduction). If Γ; ∆ `n p : S and p→v p
′

then Γ; ∆ `n p′ : S.

We now state the correctness of the type system with respect to
the CPS translation. To this end, we first introduce a translation of
the types of terms and contexts into simple types as follows:

b = b

S → [C1 . . . Cn+1] = S → C1 → . . .→ Cn+1 → o

Ci = S B Ci+1 . . .B Cn+1

= S → Ci+1 → . . .→ Cn+1 → o

Cn+1 = ¬S = S → o

where o is an abstract answer type.
We also define a translation on typing contexts in the usual way,

i.e., Γ (resp., ∆) is obtained from Γ (resp., ∆) by translating all
types occurring in Γ (resp., ∆).

PROPOSITION 4 (Soundness of typing wrt. CPS). The following
implications ensure the soundness of the typing of the hierarchy
with respect to the CPS translation, where ` denotes the standard
typing judgments deriving simple types for pure lambda terms:

1. If Γ; ∆ `n t : C1, . . . , Cn+1, then Γ; ∆ ` t : C1 → . . .→
Cn+1 → o.

2. If Γ; ∆ `n Ei : Ci, then Γ; ∆ ` [[Ei]] : Ci, for all
i = 1, . . . , n.

3.4 Termination of Evaluation
We prove termination for call-by-value evaluation, extending the
method used by Biernacka and Biernacki [4] for level-1 shift and
reset to the level n of the hierarchy. The proof technique is a
context-based variant of Tait’s reducibility predicates [26]. For
simplicity, we restrict ourselves to closed terms, but the result can
be extended to open terms.

We define mutually inductive families of predicates on terms
and contexts as shown in Figure 5. The predicate RS , indexed
by term types, is defined on values, and the predicates KCi , in-
dexed by context types, are defined on evaluation contexts for all
i = 1, . . . , n + 1. A value of a function type is reducible iff the
program obtained by applying this value to a reducible value and
put within reducible contexts normalizes (i.e., it evaluates to a pro-
gram value). In turn, a context Ei of level i is reducible iff the
program 〈v, •1, . . . , •i−1,Ei,Ei+1, . . . ,En+1〉 built from any re-
ducible value v and any reducible contexts Ei+1, . . . ,En+1 of the
appropriate types normalizes. The predicateN is defined on closed
programs: N (p) holds iff p evaluates to a program value in the
call-by-value strategy (the strategy is enforced by the grammar of
contexts E1).

In the following, for any closed value v we write ` v : S iff
there exist C2, . . . , Cn+1 such that ·; · `n v : S B C2 . . . B
Cn+1, C2, . . . , Cn+1. Because v is pure, we do not care about the
specific C2, . . . , Cn+1, as discussed in Section 3.3.

In order to prove termination, we need the following two lem-
mas.

LEMMA 10. If Ii(Ci), then KCi(•i).

LEMMA 11. Let t be a plain term such that Γ; ∆ `n t :
C1, . . . , Cn+1, where Γ = x1 :T1, . . ., xn : Tn and ∆ =
k1i1 :D1

i1 , . . ., k
m
im : Dm

1 . Let ~v be closed values such that ` vi :

Ti and RTi(vi) for all i = 1, . . . , n. Let ~Ei be closed contexts
such that ·; · `n E j

ij
: Dj

ij
and K

D
j
ij

(E j
ij

). Let E ′1, . . . ,E
′
n+1



Rb(v) := True

RS→[C1,...,Cn+1](v0) := ∀v1.RS(v1)→ ∀E1 .KC1(E1 )→ . . .→ ∀En+1.KCn+1(En+1)→ N (〈v0 v1,E1 , . . . ,En+1〉)

K¬S(En+1) := ∀v.RS(v)→ N (〈v, •1, . . . , •n,En+1〉)
KSBCi+1...BCn+1(Ei) := ∀v.RS(v)→ ∀Ei+1.KCi+1(Ei+1)→ . . .→ ∀En+1.KCn+1(En+1)

→ N (〈v, •1, . . . , •i−1,Ei,Ei+1, . . . ,En+1〉)
N (p) := ∃v. p→∗v 〈v, •1, . . . , •n+1〉

Figure 5. Reducibility predicates

be closed contexts such that ·; · `n E ′i : Ci and KCi(E
′
i ). Then

N (〈t{~v/~x, ~Ei/~ki},E ′1, . . . ,E ′n+1〉) holds.

The proof of Lemma 11 is similar to the one of the analogous
lemma in [4]; this lemma is used to prove the following result:

THEOREM 2 (Termination of evaluation). Let t be a closed plain
term such that ·; · `n t : C1, . . . , Cn+1, and Ii(Ci) hold for all
i = 1, . . . , n+ 1. ThenN (〈t, •1, . . . , •n+1〉) holds.

Theorem 2 is stated for plain terms only, since it is only for
such terms that we are able to control the reducibility property of
captured contexts occurring in them (here, it can only happen by
substituting a reducible context for a continuation variable).

3.5 Expressiveness
In this section, we prove that the hierarchy of operators Li and
←↩i is as expressive as the hierarchy of the original operators

shift Si and throw
S←↩i [8]. We also consider an alternative throw

operator
C←↩i and compare it with ←↩i .

Regular shift and throw operators Because the original hierar-
chy of shifti and reseti operators with the addition of a throwi op-
erator can be embedded in our hierarchy, the typing rules and the
associated results carry over to the original hierarchy.

We now show how to express Li and ←↩i with the regular shift
and throw. We define a translation (·)◦ which rewrites terms with

Li and ←↩i into terms with Si and
S←↩i in the following way:

x◦ = x

(λx.t)◦ = λx.t◦

(t0 t1)◦ = t◦0 t
◦
1

〈t〉◦i = 〈t◦〉i
(Li(k1, . . . , ki).t)◦ = S1k◦1 .S2k◦2 .. . .Sik◦i .t◦

((h1, . . . , hi)←↩i t)◦ =

(λx.〈h◦i
S←↩i . . . 〈h◦2

S←↩2 〈h◦1
S←↩1 x〉1〉2 . . .〉i) t◦

E◦i = (•1, •2, . . . , •i−1,Ei)

k◦i = (ki1, . . . , k
i
i)

We assume that the translation of continuation variables k◦i is
deterministic (i.e., it generates always the same tuple of variables,
written (k◦i (1), . . . , k◦i (i))) and that the translation of two different
variables generates disjoint tuples. The idea of the translation is to
perform successive shifts, in order to capture tuples of contexts of
the form (•1, •2, . . . , •i−1,Ei). In the translation of ←↩i , the
contexts Ei are then restored successively by throwing to these
tuples. Note that in the translated terms, we always throw to a tuple
of contexts captured by a singular shift, therefore we respect the
semantics of Si.

In order to prove the soundness of the translation with respect
to CPS, we define a function ·̂, which returns the CPS translation
of h◦i .

Ê◦i = [[Ei]]

k̂◦i = λxki+1 . . . kn+1.k
◦
i (1) x k◦i (2) . . . k◦i (i) ki+1 . . . kn+1

In the following, we write t{(k′1, . . . , k′i)/k◦i } as a shorthand for
t{k′1/k◦i (1), . . . , k′i/k

◦
i (i)}.

LEMMA 12. The following equalities hold for all 1 ≤ j ≤ i:
Sjk◦j .. . .Sik◦i .t =βη λk1 . . . kn+1.

t{(θ1 . . . θi−1, ki)/k
◦
i , . . . , (k1 . . . kj)/k

◦
j }

θ1 . . . θi ki+1 . . . kn+1

〈h◦i
S←↩j . . . 〈h◦1

S←↩1 x〉1〉j =βη λk1 . . . kn+1.ĥ◦1 x ĥ
◦
2 . . . ĥ

◦
j

(λv0k
′
j+2 . . . k

′
n+1.k1 v0 k2 . . . kj+1k

′
j+2 . . . k

′
n+1)

kj+2 . . . kn+1

k̂◦i {(θ1 . . . θi−1, k
′
i)/k

◦
i } =βη k′i

Using this lemma, we can prove the simulation theorem below.

THEOREM 3. Let t be a term (written with Li and ←↩i ) and
let k1i1 , . . . , k

j
ij

be its free continuation variables. Then t◦ =βη

t{k̂1i1
◦/k1i1 , . . . , k̂

j
ij

◦
/kjij}.

In particular, for closed terms we have t◦ =βη t.
The translation preserves typing judgments, except that we have

to take into account the fresh variables generated by the translation
of a continuation variable. To this end, we translate the type assign-
ment (k1 : Ci)

◦ = k◦i (1) :D1 . . ., k
◦
i (i− 1) : Di1 , k

◦
i (i) : Ci,

where D1 . . . Di−1 are arbitrary types such that Ij(Dj) holds for
j ∈ 1 . . . i− 1. We then have the following result.

LEMMA 13. If Γ; ∆ `n t : C1 . . . Cn+1 then Γ; ∆◦ `n t◦ :
C1 . . . Cn+1.

An alternative throw operator In some cases we may want to

consider an alternative throw operator
C←↩i , which restores saved

contexts and discards the current ones without storing them. For-
mally, its CPS translation is defined as follows:

(h1, . . . , hi)
C←↩i t = λk1 . . . kn+1.

t (λv0k
′
2 . . . k

′
n+1.[[h1]] v0 [[h2]] . . . [[hi]] k

′
i+1 . . . k

′
n+1)

k2 . . . kn+1

and the corresponding reduction rule is:

〈(E ′1, . . . ,E ′i )
C←↩i v,E1, . . . ,En+1〉 →v

〈v,E ′1, . . . ,E ′i ,Ei+1, . . . ,En+1〉



The operators
C←↩i and ←↩i can be defined one in terms of the

other as follows:

(h1, . . . , hi)
C←↩i t = (λx.Li(k′1, . . . , k′i).(h1, . . . , hi)←↩i x) t

where {k′1, . . . , k′i} ∩ {h1, . . . , hi} = ∅

(h1, . . . , hi)←↩i t = (λx.〈(h1, . . . , hi)
C←↩i x〉i) t

The idea behind the first equality is to capture and destroy the
current contexts with Li; when the throw ←↩i is performed,
only empty contexts are pushed on the context of level i + 1.
In the second equation, the delimiter 〈·〉i effectively pushes the
current contexts up to level i on the context of level i + 1, and

the throw
C←↩i restores the captured contexts, discarding only the

empty contexts •1, . . . , •i in the process. One can check that both
equations are sound with respect to the CPS translation.

We can derive a typing rule for
C←↩i from the type system

of Figure 4 using the equation above, or directly from its CPS
translation:

C1 = S B C2 . . .B Cn+1

Γ; ∆ `n h1 : C1 . . . Γ; ∆ `n hi : Ci
D′1 = S B C′2 B . . . C′i B Ci+1 B . . . Cn+1

Γ; ∆ `n t : D′1, D2, . . . , Dn+1

Γ; ∆ `n (h1, . . . , hi)
C←↩i t : D1, D2, . . . , Dn+1

As in the previous case, the properties of subject reduction, sound-
ness w.r.t. the CPS translation, and termination of evaluation hold
for the new system, therefore one can use interchangeably the two
throw operators.

3.6 Reflecting instead of throwing
As observed in [5], in practical applications it is often more con-
venient to specify continuation of the computation rather than to
throw a value of this computation to the continuation. Such an op-
eration (h1, . . . , hi) ↪→i t of installing a tuple of continuations as
the current continuations of a given computation can be defined via
CPS translation as follows:

(h1, . . . , hi) ↪→i t = λk1 . . . kn+1.t [[h1]] . . . [[hi]]

(λvk′i+2 . . . k
′
n+1.k1 v k2 . . . ki+1k

′
i+2 . . . k

′
n+1)

ki+2 . . . kn+1

Following the leads of this section it is then possible to derive
the reduction and typing rules for this construct and to prove their
expected properties.

4. More Flexible Control Operators
In this section we consider some variants of the operators intro-
duced in Section 3. Instead of capturing and throwing to continu-
ous sequences of contexts starting from 1 (E1, . . . ,Ei), we allow
capture and throw to any sequence of contexts Ei1 , . . . ,Eij , where
1 ≤ i1 < i2 < . . . < ij ≤ n. The syntax of terms is now defined
as follows:

t ::= x | λx.t | t t | L∗(ki1 , . . . , kij ).t | 〈t〉i |

(hi1 , . . . , hij )
∗←↩ t,

the syntax of level-1 contexts is adjusted accordingly:

E1 ::= •1 | v E1 | E1 t | (pEi1q, . . . , pEijq)←↩i E1

and the remaining syntactic categories are defined as before. The
CPS translation, reduction rules, and typing rules for the operators
L∗ and

∗←↩ are summarized in Figure 6. Notice that when

we consider captures and throws to consecutive sets of variables
starting from 1 (k1 . . . ki), we obtain the same definitions and rules
as in Section 3.

Using the same proof techniques as in the previous section, we
can also prove the following results.

THEOREM 4 (Subject reduction). If Γ; ∆ `n p : S and p→v p
′

then Γ; ∆ `n p′ : S.

PROPOSITION 5 (Soundness of typing wrt. CPS). The following
implications hold:

1. If Γ; ∆ `n t : C1, . . . , Cn+1, then Γ; ∆ ` t : C1 → . . .→
Cn+1 → o.

2. If Γ; ∆ `n Ei : Ci, then Γ; ∆ ` [[Ei]] : Ci, for all
i = 1, . . . , n.

PROPOSITION 6 (Soundness of reduction wrt. CPS). If p →v p′,
then p =βη p′.

THEOREM 5 (Termination of evaluation). Let t be a closed plain
term such that ·; · `n t : C1, . . . , Cn+1 and Ii(Ci) hold for all
i = 1, . . . , n+ 1. ThenN (〈t, •1, . . . , •n+1〉) holds.

Expressiveness We first show how to simulate the operators Li
and

∗←↩ with Si and
S←↩i . We use the same translation as in

Section 3.5, except that we translate
∗←↩ in the following way:

((hi1 , . . . , hij )
∗←↩ t)◦ =

(λx.〈Kij

S←↩ij . . . 〈K2
S←↩2 〈K1

S←↩1 x〉1〉2 . . .〉ij ) t◦

with Kl = h◦l if l ∈ {i1, . . . , ij} and Kl = (•1, . . . , •l) other-
wise. In the translation, if l /∈ {hi1 , . . . , hij}, then we restore the
empty context •l as the current context of level l by throwing to •l
(in fact to the tuple (•1, . . . , •l), but only the last context matters).
Otherwise, we throw to h◦l , as in the translation for ←↩i . Because
the translation of Li remains unchanged, we still throw to tuples of
contexts captured by a singular shift, as required by the semantics
of shift. Expressing L∗ with Si seems more difficult, because L∗
may capture some contexts and leave the first one unchanged, while
Si always captures a tuple of contexts, starting from the first one.
We conjecture that L∗ cannot be expressed with Si.

As in Section 3.5, we may consider an alternative throw operator
C∗←↩ , such that (Ei1 , . . . ,Eij )

C∗←↩ v replaces the current contexts
at positions i1, . . . , ij by Ei1 , . . . ,Eij , and leaves the other ones
unchanged. We define this operator via its CPS translation:

(hi1 , . . . , hij )
C∗←↩ t = λk1 . . . kn+1.

t (λv0k
′
2 . . . k

′
n+1.c1 v0 c2 . . . cij k

′
ij+1 . . . k

′
n+1)

k2 . . . kn+1

where cl = [[hl]] if l ∈ {i1, . . . , ij} and cl = kl otherwise. The
corresponding reduction rule is:

〈(E ′1, . . . ,E ′i )
C∗←↩ v,E1, . . . ,En+1〉 →v

〈v,E ′′1 , . . . ,E ′′ij ,Eij+1, . . . ,En+1〉

where E ′′l = E ′l if l ∈ {i1, . . . , ij} and E ′′l = El otherwise. We

can express
∗←↩ with

C∗←↩ as follows:

(hi1 , . . . , hij )
∗←↩ t = (λx.〈(hi1 , . . . , hij )

C∗←↩ x〉ij ) t

Roughly, the delimiter 〈·〉ij pushes the current contexts on Eij+1,

and the captured contexts are then restored with
C∗←↩ . How-

ever, simulating
C∗←↩ with

∗←↩ seems difficult, mainly because



CPS translation

L∗(k′i1 , . . . , k
′
ij

).t = λk1 . . . kn+1.t{k′i1/ki1 , . . . , k
′
ij/kij} c1 . . . cij kij+1 . . . kn+1

where cl =

{
θl if j ∈ {i1, . . . , il}
kl otherwise for all 1 ≤ l ≤ ij

(hi1 . . . hij )
∗←↩ t = λk1 . . . kn+1.t (λv0k

′
2 . . . k

′
n+1.[[hi1 ]] v0 di1+1 . . . dij (λv1k

′′
ij+2 . . . k

′′
n+1.k1 v1 k

′
2 . . . k

′
ij+1 k

′′
ij+2 . . . k

′′
n+1)

k′ij+2 . . . k
′
n+1) k2 . . . kn+1

where dl =

{
[[hl]] if j ∈ {i1, . . . , il}
θl otherwise for all i1 ≤ l ≤ ij

Reduction rules

(capture∗) 〈L∗(ki1 , . . . , kij ).t,E1 , . . . ,En+1〉 →v 〈t{E1/ki1 , . . . ,Eij/kij},E ′1, . . . ,E ′ij ,Eij+1, . . . ,En+1〉

where E ′l =

{
•l if j ∈ {i1, . . . , il}
El otherwise for all 1 ≤ l ≤ ij

(throw∗) 〈(E ′i1 , . . . ,E
′
ij )

∗←↩ v,E1 , . . . ,En+1〉 →v 〈v,E ′′1 , . . . ,E ′′ij ,Eij+1.(Eij ., . . . , (E2.E1 ), . . . , ),Eij+2, . . . ,En+1〉

where E ′′l =

{
E ′l if j ∈ {i1, . . . , il}
•l otherwise for all i1 ≤ l ≤ ij

Typing rules

Il(Dl) if l ∈ {i1, . . . , ij} Dl = Cl if l /∈ {i1, . . . , ij} Γ; ∆, ki1 : Ci1 . . ., kij : Cij `n t : D1, . . . , Dij , Cij+1 . . . Cn+1

Γ; ∆ `n L∗(ki1 , . . . , kij ).t : C1, C2, . . . , Cn+1

Ci1 = S B Ci1+1 . . .B Cn+1 Cij+1 = T B C′ij+2 . . .B C′n+1 Il(Cl) if l /∈ {i1, . . . , ij} and i1 ≤ l ≤ ij
Γ; ∆ `n hi1 : Ci1 . . . Γ; ∆ `n hij : Cij

Γ; ∆ `n t : S B C′′2 B . . . C′′i+1 B Ci+2 B . . . Cn+1, D2, . . . , Dn+1

Γ; ∆ `n (hi1 , . . . , hij )←↩i t : T B C′′2 B . . . C′′ij+1 B C′ij+2 B . . . C′n+1, D2, . . . , Dn+1

Figure 6. CPS translation, reduction rules, and typing rules for L∗ and
∗←↩

(Ei1 , . . . ,Eij )
C∗←↩ v leaves contexts El such that l ≤ ij and

l /∈ {i1, . . . , ij} unchanged, while (Ei1 , . . . ,Eij )
∗←↩ v replaces

them with •1. We conjecture that
C∗←↩ cannot be expressed with

∗←↩ .

5. Conclusion and Perspectives
We have developed the most expressive monomorphic type system
for a family of control operators in the CPS hierarchy and for this
type system we have proved subject reduction, soundness with
respect to CPS, and termination of evaluation. We believe that
the present article, as a sequel to the operational foundations of
the CPS hierarchy built by the first two authors and Danvy, is
another step towards better understanding of the CPS hierarchy,
and consequently, that it can inspire new theoretical and practical
applications of this beautiful but complex computational structure.

There are several directions for future research related to the
present work. First of all, as opposed to the type systems of Danvy
and Yang [9] and of Murthy [22] the type system presented in this
work allows for computations that modify the answer type of con-
tinuations at an arbitrary level of the hierarchy, which should open
new possibilities for practical applications that otherwise could
only be expressed in an untyped setting.

Building an experimental implementation of the hierarchy with
types à la Danvy and Filinski as presented in this article is another
task. In particular, one can use the syntactic correspondence be-
tween context-based reduction semantics and abstract machines [6]
to obtain an abstract machine equivalent with the reduction seman-
tics of this article, or one could adjust the existing abstract machine
for the hierarchy [5] accordingly and prove its correctness with re-
spect to the reduction semantics. Devising a type reconstruction
algorithm for the hierarchy should not pose any serious problems.
A more ambitious goal is to marry the type system from this work
with ML-polymorphism, which could be done along the lines pre-
sented by Asai and Kameyama [2].

Another improvement would be to allow for level polymor-
phism. Before typing a program with our system, we have to fix the
number of hierarchy levels n, which can be problematic in practice.
The whole program has to be typed using the n + 1 levels, even if
only a few parts are actually using high-level control operators. If
we use a library in various programs, each with its own hierarchy
level, we have to type the library several times, which goes against
modularity. These issues could be fixed by allowing for level poly-
morphism: from a level n typing judgment, it should be possible to
obtain a level n+ 1 judgment, as in Shan’s type system [25].



It would be interesting to formalize the proof of termination
of evaluation in the CPS hierarchy in a logical framework such
as the Calculus of Inductive Constructions of Coq. As has been
shown before [3, 4], normalization proofs by Tait’s context-based
method yield, through program extraction from proofs, non-trivial
evaluators in CPS and the program extraction mechanism of Coq
could be helpful for this task.

The present article focuses on the CPS hierarchy under the call-
by-value reduction strategy. A natural next step is to see how the
type system à la Danvy and Filinski for call-by-name shift and reset
introduced by the first two authors [4] generalizes to a call-by-name
hierarchy. It would be instructive to relate such a hierarchy to the
one recently presented by Saurin [24].

Finally, the still open question of the logical interpretation of
delimited continuations through the Curry-Howard isomorphism
carries over from shift and reset to the hierarchy.
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