
Optimal pattern matching in LZW compressed strings ∗

Pawe l Gawrychowski †

Abstract

We consider the following variant of the classical pattern
matching problem: given an uncompressed pattern
s[1 . .m] and a compressed representation of a string
t[1 . . N ], does s occur in t? When t is compressed using
the LZW method, we are able to detect the occurrence
in optimal linear time, thus answering a question of
Amir, Benson, and Farach [2]. Previous results implied
solutions with complexities O(n logm + m) [2], O(n +
m1+ε) [14], or (randomized) O(n log N

n + m) [8], where
n is the size of the compressed representation of t. Our
algorithm is simple and fully deterministic.

Key-words: pattern matching, compression,
Lempel-Ziv-Welch

1 Introduction

Even though the processing capabilities of a modern
hardware are growing very rapidly, so is the amount
of the data gathered and stored by both individual
users and all types of organizations. While inventing
efficient compressing methods to store this data has
been a very active research area since decades, it
seems that with more and more aspects of our lives
being processed digitally, the necessity of developing
very efficient compression methods is becoming even
more important, where efficient should be understood
as both fast and achieving a good compression ratio.
But even the best compression scheme will not get us
much gain if performing any operation on the stored
information requires uncompressing it anyway. Thus
we should aim to develop not only good compression
methods but also efficient algorithms working on the
compressed representation alone, preferably with the
running times depending only (or mainly) on the size
of this representation, not the original input.

The most ubiquitous problem concerning processing
information is the pattern matching for strings, in which
we are given a pattern p[1 . .m] and a text t[1 . . N ],
and the goal is to find if there is an occurrence of
p in t. There are many efficient solutions to this

∗Supported by MNiSW grant number N N206 492638, 2010–

2012
†Institute of Computer Science, University of Wroc law, 50–383

Wroc law, Poland. gawry@cs.uni.wroc.pl

problem, starting with the first linear time solution
of [15], then optimized for the delay between reading
two consecutive letter of the text in [10, 13], the amount
of additional memory used [11], and the total number
of comparisons [5], to name just a few improvements,
with the two most well-known algorithms being Knuth-
Morris-Pratt [13] and Boyer-Moore [4].

If the string is given in a compressed representation,
we get the compressed pattern matching problem. Given
a text t and a pattern p we need to check if there
is an occurrence of p in t without decompressing t,
i.e., the running time should depend on the size n
of the compressed representation of T alone rather
than on the original length N . According to Amir
and Benson [1], a solution to such problem is efficient
if its time complexity is o(N), almost optimal if its
time complexity is O(n logm + m), and optimal if the
complexity is O(n+m).

Complexity of the compressed pattern matching
problem clearly depends on the particular compression
method chosen. If we use any nonadaptive compression,
the problem becomes rather simple. On the other hand,
adaptive compression methods based on the Lempel-
Ziv method [20] seems to be quite challenging to deal
with efficiently, mostly because of the fact that the same
fragment of a text might be encoded differently depend-
ing on its exact location. There has been a substantial
amount of work devoted to developing fast algorithms
for pattern matching in both Lempel-Ziv and its sim-
plified version Lempel-Ziv-Welch [19] compressed texts.
In [2] the authors introduced two algorithms with time
complexities O(n+m2) and O(n logm+m) for Lempel-
Ziv-Welch compressed texts. The pattern preprocess-
ing time has been improved in [14] to get O(n+m1+ε)
time complexity. Then [8] developed algorithm work-
ing for any Lempel-Ziv compressed text in (random-
ized) time O(n log2 N

n +m), with a version simplified for
Lempel-Ziv-Welch working in (also randomized) time
O(n log N

n + m). [16] developed a practical O(nmw ) al-
gorithm exploiting bit-parallelism. There has been also
a substantial amount of research devoted to a more
general problem of fully compressed pattern matching,
where both the text and the pattern are compressed.
For the case of LZW compression, Gasieniec and Ryt-
ter [12] developed an O((n+m) log(n+m)) algorithm,



where n and m are the compressed sizes of the text and
the pattern, respectively. Here we are concerned only
with the case of uncompressed patterns, though.

In this paper we show that the compressed pattern
matching problem can be solved in optimal linear time
for Lempel-Ziv-Welch compressed texts. Variants of
this compression method are used, for example, in Unix
compress utility, in GIF images, and (optionally) in
TIFF and PDF files so this result is not only of purely
theoretical interest. Our algorithm is simple and fully
deterministic.

2 Preliminaries

Let Σ be a fixed finite alphabet (later we will also
deal with the more general case of polynomial size
integer alphabet). We consider strings over Σ given
in a Lempel-Ziv-Welch compressed form, which is a
simplified version of Lempel-Ziv compression defined
as follows: given an uncompressed string t[1 . . N ] we
iteratively construct its representation by looking up
and removing the longest prefix of the current suffix
t[k . .N ] which already occurs in t[1..k − 1]. The out-
put is a sequence of triples (starti, leni, nexti) with
t[starti . . starti + leni− 1] being this longest prefix and
nexti being the proceeding character. In Lempel-Ziv-
Welch compression the string is represented as a se-
quence of codewords where a codeword is either a single
letter, or a previously occurring codeword concatenated
with a single character. This additional character is not
given explicitly: we define it as the first character of the
next codeword, and initialize the set of codewords to
contain all single characters in the very beginning. The
resulting compression method enjoys a particularly sim-
ple encoding/decoding process, but unfortunately re-
quires outputting at least Ω(

√
N) codewords. Still, its

simplicity and good compression ratio achieved on real
life instances make it an interesting model to work with.
For the rest of the paper we will use LZW when referring
to Lempel-Ziv-Welch compression.

We are interested in a variation of the classical
pattern matching problem: given a pattern s[1 . .m]
and a text t[1 . . N ], does s occur in t? In our case t
is given in a compressed form. We wish to achieve a
running time depending on the size n of this compressed
representation, not the length of t itself. Additionally,
we would like to keep the memory complexity as low
as O(m), preferably with the algorithm reading the
compressed representation of t just once from left to
right. If the pattern does occur in the text, we would
like to get the position of its first occurrence, and if there
are occ occurrences, we would like to output all of them
while adding just O(occ) to the overall time complexity.

The very first thing we do is preprocessing s. Using

standard tools (suffix trees [7, 18] built for both the
pattern and the reversed pattern, and lowest common
ancestor queries [3]) we get the following:

Lemma 2.1. Pattern s can be preprocessed in linear
time so that given any two fragments s[i . . i + k] and
s[j . . j + k] we can find their longest common prefix
(suffix) in constant time.

Lemma 2.2. Pattern s can be preprocessed in linear
time so that given any fragment s[i . . j] we can find
its longest prefix which is a suffix of the whole pattern
in constant time, assuming we know the (explicit or
implicit) vertex corresponding to s[i . . j] in the suffix
tree.

Proof. We assume that the suffix tree is built for s
concatenated with a special terminating character, say
$. Each leaf in the suffix tree corresponds to some suffix
of s, and is connected to its parent with an edge labeled
with a single letter. If we mark all those parents, finding
the longest prefix which is a suffix of the whole s reduces
to finding the lowest marked vertex on a given root-to-
vertex path, which can be precomputed for all vertices
in linear time. ut

At a very high level our procedures resemble the old
and well-known Knuth-Morris-Pratt pattern matching
algorithm: we compute the longest prefix of s which is
a suffix of the current prefix of the text. Recall that
if we already have such longest prefix of a given t[1..i]
and need to compute the longest match for t[1..i + 1],
there are two possibilities. Either we extend the current
longest prefix by t[i+1], or we can safely replace it with
the longest proper border, where border of a string is its
fragment which is a suffix and a prefix at the same time
(usually we identify such fragment with its length and
say that border(t) = {i1, . . . , ik} is the set of all borders
of t). A closely related concept is the notion of periods:
p is a period of w if w[i] = w[i+ p] whenever both w[i]
and w[i + p] are defined. It is easy to see that p is a
period of w if and only if |w| − p is a border, and the
following property holds:

Lemma 2.3. (Periodicity lemma) If both p and q
are periods w, and p+q ≤ |w|+gcd(p, q), then gcd(p, q)
is a period as well.

This lemma helps us to avoid performing the com-
putation for every possible prefix of the text. We will
try to restrict attention to just O(n) of them without
losing any potential occurrence, and to this aim we will
need the following property:



s[1..i] s[j..m]

p s[1..k]

a

b

obstacle

Figure 1: Detecting an occurrence in a concatenation of two snippets.

Lemma 2.4. If the longest border of t is of length b ≥
|t|
2 then all borders of length at least |t|2 create one

arithmetic progression. More specifically, border(t) ∩{
|t|
2 , . . . , |t|

}
=
{
|t| − αp : 0 ≤ α ≤ |t|2p

}
, where p =

|t|−b is the period of t. We call this set the long borders
of t.

Proof. First note that p = |t| − b is the period of |t| so
any αp is also a period, as long as α ≤ |t|

p . Thus all
elements of the arithmetic progression in the lemma are
borders. We must show that there are no other borders
of length at least |t|2 . Let b′ be any such border. Observe
that p′ = |t| − b′ is a period and p+ p′ ≤ |t| so from the
periodicity lemma gcd(p, p′) is a period as well. But p
is the shortest period so p divides p′ and b′ belongs to
the progression. ut

Thanks to the above lemma instead of processing
borders one-by-one we can split them into log |t| groups
with all borders in a single group creating one arithmetic
progression, and hope to process them all at once. We
will need the borders of both prefixes and suffixes of s.

Lemma 2.5. Pattern s can be preprocessed in linear
time so that we can find the border of each its prefix
(suffix) in constant time.

Proof. Simply do the standard preprocessing from the
Knuth-Morris-Pratt algorithm for both s and the re-
versed s. This preprocessing results in computing the
border of each possible prefix. ut

3 Pattern matching in a sequence of snippets

To detect an occurrence of the pattern in a LZW com-
pressed string we will construct a collection of strings
constructed by concatenating a number of substrings of
the pattern one after another. In this section we show
that after such reduction we can solve the problem in
optimal linear time.

Definition 3.1. A snippet is any substring of the pat-
tern s[i . . j]. If i = 1 we call it a prefix snippet, if
j = m a suffix snippet. A sequence of snippets of
size k is a concatenation of k substrings of the pattern
s[i1 . . j1] . . . s[ik . . jk].

We assume that for each snippet we store not only
the indices i, j but also a link to the corresponding node
(either explicit or implicit) in the suffix tree and the
longest suffix which is a prefix of the whole pattern (in
case of a prefix snippet this is of course the whole frag-
ment). Given a sequence of such snippets we would
like to simulate the Knuth-Morris-Pratt algorithm effi-
ciently. To this aim we need the following two lemmas.

Lemma 3.1. Given any two snippets we can detect
an occurrence of the pattern in their concatenation in
constant time.

Proof. Let the two snippets be s[i . . j] and s[k . . `].
If one of them is the whole pattern, we are done.
Otherwise we are looking for x and y such that i ≤
x ≤ j, k ≤ y ≤ ` and s = s[x . . j]s[k . . y]. We
can replace s[i . . j] with its longest suffix which is a
prefix of the whole s, and s[k . . `] with its longest
prefix which is a suffix of the whole s, without losing
any possible occurrence. This takes just constant time
thanks to Lemma 2.2. Then we are left with the
following question: does s occur in s[1 . . i]s[j . .m]?
Or, in other words, is there x ∈ border(s[1 . . i]) and
y ∈ border(s[j . .m]) such that x + y = m? Note that
either x ≥ |s[1..i]|

2 or y ≥ |s[j..m]|
2 , and without losing

the generality assume the former. From Lemma 2.4
we know that all such possible values of x create one
arithmetic progression. More specifically, x = i − αp,
where p ≤ i

2 is the period of s[1 . . i]. We need to
check if there is an occurrence of s in s[1 . . i]s[j . .m]
starting after the αp-th character, for some 0 ≤ α ≤ i

p .
For any such possible interesting shift, there will be no
mismatch in s[1 . . i]. There might be a mismatch in
s[j . .m], though.

Let k ≥ i be the longest prefix of s for which
p is a period (such k can be calculated efficiently by
looking up the longest common prefix of s[p + 1 . .m]
and the whole s). We shift s[1 . . k] by

⌊
min(i,i−j+1)

p

⌋
p

characters (the minimum is chosen so that extending
s[1 . . k] to the whole s does not result in sticking out
of the right end of s[j . .m]) and compute its leftmost
mismatch with s[j . .m], see Figure 1. Note that such
shift is the largest possible among all shifts of the form



Algorithm 1 Naive-pattern-matching(s1, s2, . . . , sn)
1: q ← 0
2: `← longest prefix of s ending s1 . Lemma 2.2
3: k ← 2
4: while k ≤ n and `+

∑n
i=k |si| ≥ m do

5: check for an occurrence of s in s[1 . . `]sk . Lemma 3.1
6: if s[1 . . `]sk is a prefix of s then
7: `← `+ |sk|
8: k ← k + 1
9: continue

10: end if
11: p← period(s[1 . . `]) . Lemma 2.5
12: b← longest long border of s[1 . . `] such that s[1 . . b]sk is a prefix of s . Lemma 3.2
13: if b is undefined then
14: `← longest prefix of s ending s[

⌈
`
2

⌉
. . `] . Lemma 3.3

15: continue
16: end if
17: `← b+ |sk|
18: k ← k + 1
19: end while

αp which start in s[1 . . i] and end in s[j . .m]. Position
of the first mismatch, or its nonexistence, allows us to
eliminate all but one interesting shift. More precisely,
we have two cases to consider.

1. There is no mismatch. If k = m we are done,
otherwise s[k + 1] 6= s[k + 1 − p], meaning that
choosing any smaller interesting shift results in a
mismatch.

2. There is a mismatch. Let the conflicting characters
be a and b and call the position at which a occurs
the obstacle. Observe that we must choose a shift
αp so that s[1 . . k] shifted by αp is completely on
the left of the obstacle. On the other hand, if
s[1 . . k] shifted by (α+1)p is completely on the left
as well, shifting s[1 . . k] by αp results in a mismatch
because s[k+1] 6= s[k+1−p] and s[k+1−p] matches
with the corresponding character in s[j . .m]. Thus
we may restrict our attention to the largest shift
for which s[1 . . k] is on the left of the obstacle.

Having identified the only interesting shift, we verify
if there is a match using one longest common prefix
query on s. Overall, the whole procedure takes constant
time. ut

Lemma 3.2. Given a prefix snippet s[1 . . i] and a snip-
pet s[j . . k] we can find the longest long border b of
s[1 . . i] such that s[1 . . b]s[j . . k] is a prefix of the whole
s in constant time.

Proof. As in the previous proof, we begin with comput-
ing k ≥ i, the longest prefix of s for which p is a period,
where p is the period of s[1 . . i]. We need to choose the
smallest α so that shifting s by αp characters results
in no mismatches with s[1 . . i]s[j . . k], and the shifted s
does not end before the right end of s[1 . . i]s[j . . k]. We
begin with shifting s[1 . . k] by

⌈
i+|s[j..k]|−m

p

⌉
p charac-

ters, which is the smallest possible shift, and compute
its leftmost mismatch with s[1 . . i]s[j . . k], which must
be on the right of s[1 . . i]. We have two cases to consider.

1. There is no mismatch. We check if this shift
corresponds to a valid long border in constant time
using at most one longest common prefix query. If
so, this the longest long border. Otherwise k < m
and s[k+ 1] 6= s[k+ 1− p], and choosing any larger
shift results in a mismatch, so there is no such long
border.

2. There is a mismatch. Again, call the position in
s[1 . . i]s[j . . k] at which the mismatch occurs the
obstacle. Even if we choose a larger shift, s[1 . . k]
will expect the same character at the obstacle, so
we will get a mismatch as well. Thus there is no
such long border.

ut

Now we are ready to present the first algorithm
Naive-pattern-matching. It simulates the Knuth-
Morris-Pratt algorithm, adding just two optimizations:
we extend the current match by whole snippets, not



s p

t
y

x

Figure 2: Shifting s to get an occurrence in t.

single letters, and process all long borders of the current
match at once. This is not enough to achieve a linear
complexity yet: it might happen that we need to spend
Ω(logm) time at each snippet. Nevertheless, such
method will serve as a basis for developing the optimal
solution.

While we assume that for all input snippets the
information about corresponding vertex in the suffix
tree and longest suffix being a suffix of s is already
known, during the execution we might create some new
snippets. Fortunately, they are either prefix snippets,
or snippets of the form s[

⌈
`
2

⌉
. . `] which will be called

the half snippets. Before we analyze the running time of
Naive-pattern-matching we need a small technical
lemma concerning those fresh snippets.

Lemma 3.3. Information for all prefix and half snippets
can be computed in linear time.

Proof. In case of prefix snippets the computation is
trivial. The case of all half snippets is not completely
trivial, though. To compute the suffixes we loop through
the possible values of `. Assuming we have the longest
suffix of s[

⌈
`
2

⌉
. . `] which is a prefix s[1 . . i], we try to

compute such longest suffix of s[
⌈
`+1
2

⌉
. . `+1]. For that

we consider the borders of s[1 . . i] looking for the one
which can be extended with s[` + 1]. Then we check
if the extended border is longer than s[

⌈
`+1
2

⌉
. . ` + 1]

and if so, take its border. The total complexity of this
procedure is linear because at each step we increase the
length of the current prefix by at most 1. Now consider
locating the vertices in the suffix tree. Assume that
we know the corresponding vertex for a given value of `
and need to update the information after increasing ` by
one. Extending the current word by one letter requires
traversing at most one edge in the suffix tree, then we
might need to remove the first letter. If the current
vertex is explicit, we can use its suffix link. Otherwise
we use the suffix link of its deepest explicit ancestor, and
then traverse edges down from the vertex found. This
traversing might require more than constant time, but
can be amortized by noting that the number of explicit
ancestors of the current vertex cannot exceed n, and
decreases by at most one at for each `. To finish the

proof note that looking up the edge can be performed
very quickly even when the alphabet is not constant:
there are at most two half snippets of a given length and
so we can afford to simply iterate through all outgoing
edges, then the total complexity of all lookups will be
just linear in |s|. ut

Theorem 3.1. Naive-pattern-matching works in
time O(n logm).

Proof. Observe that each iteration of the while loop
results in either increasing k by 1 or decreasing ` ≤ m
at least twice. Thus the total number of iterations is
O(n logm). In each iteration we spend just a constant
time due to the above lemmas. Note that we require
that for any snippet we know not only its start and end
in s but also the corresponding vertex in the suffix tree
(this will be very important for the improved method).
While we assume that we get such information for all
the input snippets, we might create some new snippets
during the execution of the algorithm. Fortunately, the
only possible non-input snippets we create are prefix
and half snippets, and so we can use Lemma 3.3 to
preprocess them. ut

To accelerate the above basic method we use the
concept of levers:

Definition 3.2. We call si a lever of a sequence of
snippets s1s2 . . . sk if

∑i−1
j=1 |sj | ≤

|si|
2 .

Given such a lever we can eliminate many potential
occurrences at once. This is formalized in Lemma 3.4
and Lemma 3.5.

Lemma 3.4. Given a sequence of snippets s1s2 . . . si in
which si is a lever, we can detect an occurrence of s in
s1s2 . . . si in time O(i).

Proof. Let L = |si| and S =
∑i−1
j=1 |sj |. Because

S ≤ L
2 and L ≤ m, S is at most m

2 , meaning that
any occurrence of s must end in si. Note that we can
safely replace si with the longest suffix s[k . .m] which
is its prefix, by Lemma 2.2 this requires just constant
time. First we check if s is a suffix of the whole sequence



si p

s[1..S + L]

si

si

...

k − 1

k − 1 + αp

k − 1 + α

Figure 3: All occurrences of si in s[1 . . S + L].

in time O(i). Now, any possible occurrence of s cannot
end earlier than after the m−S ≥ L

2 -th character and so
in fact we are looking for a long border b of s[k . .m] such
that s[1 . .m − b] = s1s2 . . . si−1. From Lemma 2.4 we
know that any such b must be of the form |s[k . .m]|−αp,
where p ≤ |s[k..m]|

2 is the period of s[k . .m] calculated
in constant time by Lemma 2.5. It turns out that we
can restrict the set of possible values of α to just one,
which can be then checked naively in time O(i).

First we compute how far the period of s[k . .m]
continues in s[1 . . k − 1] and s1s2 . . . si−1. In order
to perform both those computations efficiently we only
have to develop a constant time procedure which, given
two snippets s[i . . j] and s[k . . `], finds the longest suffix
of the former which is also a suffix of some power of the
latter. Such procedure works in two steps:

1. find the longest common suffix of s[i . . j] and
s[k . . `], return if it is shorter than |s[k . . `]|,

2. find and return the longest common suffix of s[i . . j]
and s[i . . j − |s[k . . j]|].

By repeating this procedure at most i times we can
assume that we know how far the period continues in
both strings. If p is a period of the whole s, check
if s is a suffix of the whole s1s2 . . si and note that if
it is not, shifting s to the left by any multiple of p
cannot result in a match. Otherwise we have found
the rightmost position x such that s[x] 6= s[x + p]. If
p is a period of the whole t = s1s2 . . si, s does not
occur there. Otherwise we have found the rightmost
position y such that t[y] 6= t[y + p]. Now we claim that
in order to get a match, we must shift s so that its
x-th character is aligned with the y-th character of t,
see Figure 2 (recall that we shift s by a multiple of p).
Indeed, choosing any smaller shift creates a mismatch
concerning s[x] and choosing any bigger shift creates
a mismatch concerning t[y]. This gives us a simple
arithmetic condition on the only possible value of α: if

p does not divide |t| − |s|+x− y there is no occurrence,
otherwise we check α = |t|−|s|+x−y

p . ut

Lemma 3.5. Given a sequence of snippets s1s2 . . . si in
which si is a lever, we can compute the longest prefix of
s which is a suffix of s1s2 . . . si in time O(i).

Proof. As in the previous proof, let L = |si| and S =∑i−1
j=1 |sj |. We calculate the longest prefix of s which

is a suffix of si in constant time by Lemma 2.2. Then
we should check if there is any longer prefix. If so, it
corresponds to an occurrence of si in s[1 . . S+L]. First
we locate the node corresponding to si in the suffix tree
built for s. The tree can be preprocessed (in linear
time) so that having this node we can compute the
first and second occurrence of si in s[1 . . S + L] (more
precisely, we compute the first and second occurrences
in the whole s, and check if they are inside s[1 . . S+L]).
If there is none, we terminate. If there is just one, we
check naively in time O(i) the corresponding prefix. If
there are two, the situation is more complicated, as in
fact there can be many more of them, and we cannot
afford to iterate through all possibilities.

Because si is a lever, L ≥ 2|S| and L ≥ 2
3 (S +

L). Thus the overlap of any two occurrences of si in
s[1 . . S + L] is of length at least L

2 and so any non-
leftmost occurrence corresponds to a long border of si.
Let p is the period of si (note that we do know p yet),
the first occurrence starts at the k-th character of s, and
the last occurrence starts at the k + αp-th character of
s. Then it is clear that there are occurrences starting at
the k+βp-th characters, for any 0 ≤ β ≤ α, see Figure 3.
In particular, the second occurrence starts at the k+ p-
th character, so knowing the positions of the first and
second occurrence allows us to compute p. Having the
value of p and k, we find the longest common prefix of
s[k . . S+L] and s[k+p . . S+L], which gives us the value
of α (more precisely, if the length is l, α =

⌊
l+p−L
p

⌋
).

Now we can use the same method as in the previous
proof. First compute how far the period of si continues



Algorithm 2 Levered-pattern-matching(s1, s2, . . . , sn)
1: q ← 0
2: `← longest prefix of s ending s1 . Lemma 2.2
3: k ← 2
4: while k ≤ n and `+

∑n
i=k |si| ≥ m do

5: choose t ≥ k minimizing |sk|+ |sk+1|+ . . .+ |st−1| − |st|
2

6: if `+ |sk|+ |sk+1|+ . . .+ |st−1| ≤ |st|
2 then

7: check for occurrence of s in s[1 . . `]sksk+1 . . . st . Lemma 3.4
8: `← longest prefix of s ending s[1 . . `]sksk+1 . . . st . Lemma 3.5
9: k ← t+ 1

10: else
11: execute lines 5–18 of Naive-pattern-matching
12: end if
13: end while

in both s[1 . . k] and s1s2 . . . si−1. Then consider the
following three cases.

1. If p is a period of s1s2 . . . si, for a nonempty suffix
which is a prefix of s to exists p must be a period
of s[1 . . k+ p] as well. Then the longest such suffix
corresponds corresponds to the biggest β ≤ α for
which S ≥ k − 1 + βp.

2. If p is not a period of the whole s1s2 . . . si but is
a period of s[1 . . k + p], any prefix of s which is a
suffix of s1s2 . . . si must be completely contained in
the periodic suffix of s1s2 . . . si. We can select the
longest such suffix in constant time.

3. If p is neither a period of the whole s[1 . . k+ p] nor
s1s2 . . . si, we get a simple arithmetic condition on
the only possible value of α. Then we verify this
value in time O(i).

ut

We are ready to present the improved (and final)
algorithm. The idea is that whenever the sequence
contains a lever, we can use Lemma 3.4 and Lemma 3.5
to quickly process a bunch of snippets. Otherwise
we stick to the same method as in Naive-pattern-
matching. We call the resulting method Levered-
pattern-matching.

While the idea is rather simple, it turns out that
the notion of levers captures all inputs on which Naive-
pattern-matching runs in superlinear time. To for-
malize this claim we will need a few technical lemmas,
but before that we show how to execute line 5 efficiently.

Lemma 3.6. Line 5 of Levered-pattern-matching
can be executed in amortized constant time, and O(m)
additional memory.

Proof. If we are allowed to use as much as Θ(n) addi-
tional memory, we can preprocess all minima going right
to left: the best possible choice of t for a given value of k
is either the same as for k+1, or it is equal k. If we would
like to optimize the amount of additional memory used,
and avoid the necessity of reading all input snippets
when there is a match somewhere near the very begin-
ning, we can use a slightly more complicated method.
First note that we are interested only in t ≤ k + m.
For each current value of k we keep an increasing list
of candidates k ≤ t1 < t2 < . . . < tc ≤ k + m. Let
f(i) = |s1| + |s2| + . . . + |si−1| − |si|

2 , then t1 is the
position with the minimum value of f in the interval
[k, k + m], t2 is the position with the minimum value
of f in the interval [t1 + 1, k + m], and so on. Before
increasing k by one we need to remove t1 from the list, if
t1 = k, and consider a new candidate k+1+m: remove
all ti with f(ti) > f(k+1+m), and add k+1+m to the
list. The amortized cost of this update is clearly con-
stant, and the maximum number of stored candidates
O(m). To find t, simply take the first candidate t1. ut

With each sequence of snippets s1s2 . . . sk we asso-
ciate its potential Φ(|s1|, |s2|, . . . , |sk|), which roughly
corresponds to the amount of work we still need to per-
form if we use the concept of levers. Before we use
it to bound the running time of Levered-pattern-
matching, we need a few observations.

Definition 3.3. Let x1, x2, . . . , xk ≤ m be a sequence
of natural numbers. Consider a segment of length∑k
i=1 xi split into k blocks of length xi, for i =

1, 2, . . . , k. First mark its suffix of length m. Then,
for each i, mark a fragment of length xi

2 ending just be-
fore the part corresponding to xi. Let yi be the length of
the marked suffix in the block corresponding to xi, and
define the potential Φ(x1, x2, . . . , xk) as

∑k
i=1 2+log xi

yi
.



x1 . . . xi−1 xi xi+1 ... xk

x1 . . . xi−1 xi+1 ... xk

Figure 4: Inserting xi between xi−1 and xi+1.

Note than all yi are strictly positive so the potential
is well-defined for any sequence of snippets.

Lemma 3.7. Φ(x1, x2, . . . , xk) ≤ 7k.

Proof. We apply induction on k. If k = 1 the
whole segment is marked so the potential is 2 and
the claim trivially holds. Let k > 1, choose xi =
min{x1, x2, . . . , xk} and assume that the claim holds
for Φ(x1, . . . , xi−1, xi+1, . . . , xk). We compute the max-
imum possible increase in the potential after inserting a
block of length xi between xi−1 and xi+1, see Figure 4.
There are two reasons the potential might increase.

1. We create a new block of xi cells. Note that either
i = k and they are all marked, or i < k and
xi+1 ≥ xi so at least xi

2 of them are marked. In
either case, the resulting increase in the potential
is at most 2 + log xi

yi
≤ 2 + log 2 = 3.

2. We move all blocks corresponding to xi+1, . . . , xk
further to the right. It might result in unmark-
ing some cells in the blocks corresponding to
x1, x2, . . . , xi−1. Because we shift all those blocks
by xi to the right, the unmarked blocks are con-
tained in a segment of such length. Because xi
is smaller than any xj with j < i, any segment
of length xi intersects at most two blocks on the
left of xi. Consider he situation in one such block:
the old potential was 2 + log xj

yj
, the new poten-

tial is 2 + log xj

y′
j

with y′j ≥ max(yj − xi, xj+1
2 ) ≥

max(yj − xi, xi

2 ). The increase is at most:

log
xj
y′j
− log

xj
yj

= log
yj
y′j
≤ log

yj
max(yj − xi, xi

2 )

=

{
log yj

yj−xi
= log yj

yj− 2
3yj

= log 3 if xi ≤ 2
3yj

log 2yj

xi
= log 2 3

2xi

xi
= log 3 if xi > 2

3yj

because there might be two such blocks, the maxi-
mum increase is twice as much, 2 log 3 ≤ 4.

By summing the above cases Φ(x1, x2, . . . , xk) ≤
Φ(x1, . . . , xi−1, xi, . . . , xk) + 7 ≤ 7k. ut

Lemma 3.8. Φ(x1, x2, . . . , xk) ≥ 1+Φ(x1+x2, . . . , xk).

Proof. Let y ≥ y2 be the number of marked cells in the
block corresponding to x1 +x2 in Φ(x1 +x2, x3, . . . , xk),
see Figure 5. The only change in the potential concerns
the first x1 + x2 cells:

∆ = Φ(x1, x2, x3, . . . , xk)− Φ(x1 + x2, x3, . . . , xk)

= 2 + log
x1

y1
+ log

x2

y2
− log

x1 + x2

y

We have a few cases to consider.

1. x1 ≤ x2
2 . Then y1 = x1 and the change in the

potential is:

∆ ≥ 2 + log
x2

y2
− log

x1 + x2

y2

= 1 + log
2x2

x1 + x2
≥ 1 + log

4
3
≥ 1

2. x1 ≥ x2
2 and y1 = x2

2 . The change in the potential
is:

∆ ≥ 2 + log
x1

y1
+ log

x2

y2
− log

x1 + x2

y2

≥ 3 + log
x1

x2
+ log

x2

y2
− log

x1 + x2

y2

= 3 + log
x1

y2
− log

x1 + x2

y2
= 3 + log

x1

x1 + x2

≥ 3 + log
1
3

= 1 + log
4
3
≥ 1

3. y1 > x2
2 . Then all marked cells in the block

corresponding to x1 are marked either because of
some long xi with i > 2 or because they are among
the m rightmost cells, so y2 = x2 and merging two
first blocks does not change the number of marked
cell there, y = y1 +y2. We can bound ∆ as follows:

∆ = 2 + log
x1

y1
− log

x1 + x2

y1 + y2

= 2 + log
x1

y1
− log

x1 + x2

y1 + x2
≥ 2

where the last inequality follows from the fact that
if p ≥ q then p

p ≥
p+r
q+r .

ut



x1 x3

y1 y2

x2 xkxk−1

y yk−1 yk

...

Figure 5: Merging blocks corresponding to x1 and x2.

Lemma 3.9. Φ(x1, x2, . . . xk) ≥ Φ(x′1, x2, . . . , xk) if
x1 ≥ x′1.

Proof. Decreasing x1 cannot change any yi with i > 1.
Let y′1 be the number of marked cells in the block
corresponding to x′1. Then y1 = y′1, and from the
definition of the potential we get the claim, or y′1 = x′1,
and log x′

1
y′
1

= 0 ≤ log x1
y1

. ut

Theorem 3.2. Levered-pattern-matching can be
implemented to work in time O(n) and use O(m) ad-
ditional memory.

Proof. Consider any execution of the algorithm. In the
very beginning we allocate Φ(|s1|, |s2|, . . . , |sn|) credits
which we then use to pay for all executions of lines
5–11 of Levered-pattern-matching. We keep the
following invariant during the whole execution: we have
Φ(`, |sk|, |sk+1|, . . . , |sn|) credits available. Consider a
single pass through the body of the while loop. From
Lemma 3.6 the amortized cost of executing 5 is constant.
Consider the remaining lines.

1. There is a lever st in s[1 . . `]sksk+1 . . . st. We need
as much as O(t−k+1) time to process it, but then
by t−k+1 applications of Lemma 3.8 the required
potential is at most:

Φ(`+ |sk|+ |sk+1|+ . . .+ |st|, |st+1|, . . . , |sn|)
≤ Φ(`, |sk|, |sk+1|, . . . , |sn|)− (t− k + 1)

which leaves us with t−k free credits which we can
use to pay for the processing time.

2. There is no lever. Then we execute the correspond-
ing lines from Naive-pattern-matching which
takes just constant time and results in either in-
creasing k by 1 and ` by at most |sk| or decreasing
` at least twice. In the first case the required po-
tential is by Lemma 3.8 and Lemma 3.9 at most:

Φ(`+ |sk|, |sk+1|, . . . , |sn|) ≤ Φ(`, |sk|, . . . , |sn|)− 1

The second case is slightly more involved: if de-
creasing ` creates a lever, we pay for the pass in

the next round. Otherwise we replace log x
y with

log x
2y in the potential so the required amount of

credits left is just:

Φ(
`

2
, |sk|, . . . , |sn|) ≤ Φ(`, |sk|, . . . , |sn|)− 1

which leaves us with one spare credit.

The total amount of allocated credits is by
Lemma 3.7 just O(n) and so is the time complexity. ut

4 LZW compression

Recall that a LZW compressed string is a sequence
of codewords t1t2 . . . tn, each codeword being either
a single letter, or a previously occurring codeword
concatenated with a single letter. First we check if the
pattern s occurs inside one of the strings represented
by the codewords. Then for each codeword we need to
know if the string it represents occurs in the pattern s,
and if it does, we need to find the corresponding vertex
in the suffix tree. We also need to know its longest
prefix which is a suffix of s, and the longest suffix which
is a prefix of s (actually, knowing the prefix is necessary
only when the string does not occur inside s). All those
informations can be found efficiently (in constant time
for each codeword) assuming that the alphabet is of
constant size.

Lemma 4.1. If the alphabet is of constant size, we can
perform the preprocessing for all codewords in total
linear time.

Proof. The whole set of codewords should be viewed as
a trie. For each vertex of this trie we are required to
compute:

1. the longest prefix of the corresponding word which
is a suffix of s,

2. if the corresponding word occurs in s, locate its
(implicit or explicit) vertex in the suffix tree,

3. the longest suffix of the corresponding word which
is a prefix of s.



We build an automaton A recognizing all prefixes of s,
i.e., its states set is {0, 1, . . . , |s|} and after reading a
word w we are in a state corresponding to the longest
prefix of s ending w. Such automaton can be easily
constructed in linear time if the alphabet is of constant
size. Using this automaton we can compute the longest
suffix of each codeword in constant time per codeword.

Then we build the suffix tree for s in linear time [18].
For each codeword we will find the corresponding vertex
in the suffix tree, if any. Note that such information is
actually enough to compute the longest prefix which is a
suffix of s for each codeword: first apply Lemma 2.2 to
all codewords with corresponding vertex in the suffix
tree. Then for all other codewords, simply take the
answer computed for its lowest ancestor with a known
result. To locate all corresponding vertices in the suffix
tree we traverse the trie in a top-bottom fashion. To
find the vertex for v, take the vertex found for its parent
and traverse at most one edge. This gives a total linear
time. ut

After applying the above lemma to the set of all
codewords, for each maximal sequence of codewords rep-
resenting substrings of s (s[i1 . . j1]s[i2 . . j2] . . . s[ik . . jk])
we take the longest suffix of the proceeding code-
word which is a prefix of s (s[1 . . i]) and the longest
prefix of the succeeding codeword which is a suf-
fix of s (s[j . .m]), and run the algorithm from
the previous section on the sequence of snippets
s[1 . . i]s[i1 . . j1] . . . s[ik . . jk]s[j . .m]. Because each such
run takes time O(k + 2), and all those values of k sum
up to at most n, the total complexity including the pre-
processing of the pattern will be O(n + m). Note that
in fact we do not have to process all codewords in the
very beginning: with a little care it is possible to process
the input in an online fashion, which results in an algo-
rithm stopping as soon as the first occurrence is found
(or, more precisely, reading at most O(m) succeeding
codewords).

Theorem 4.1. Pattern matching for LZW compressed
strings over a constant size alphabet can be solved in
optimal linear time.

5 Integer alphabets

The assumption of the constant size alphabet is not
necessary to achieve the claimed linear running time.
If the alphabet is of non-constant size but consists of
integers which can be sorted in linear time, we can create
all necessary snippets sequences in linear time as well.

Lemma 5.1. If the alphabet consists of integers which
can be sorted in linear time, we can perform the prepro-
cessing for all codewords in total linear time, assuming
the RAM model of computation.

Proof. We begin with constructing the suffix tree in
linear time using the assumption of integer alphabet
and applying the result of [7]. Then we are left
with answering the following three questions for each
different codeword:

1. find its longest prefix which is a suffix of s,

2. check if it occurs in s, and if it does, find the
corresponding vertex,

3. find its longest suffix which is a prefix of s.

We answer those questions for all codewords at once,
which requires reading the whole input even if there is
an occurrence in the very beginning. Questions of each
type are processed separately.

1. We use Lemma 2.2 and the information found for
the second type questions.

2. We build a trie T containing all the codewords.
Then answering the questions reduces to computing
the intersection of this trie and the suffix tree S
(which is a compressed representation of a trie
containing all subwords of s). This can be done in
time O(|S|+|T |) assuming the edges outgoing from
each vertex (both in S and T ) are sorted according
to their labels. We process the codewords in order
of their lengths. Assuming that we know the
corresponding vertices for all codewords of length
L, we consider all codewords wx of length L+1, and
group them according to the vertex corresponding
to w (if there is none, wx clearly does not occur in
s). In each group the codewords are sorted using
x as the key, which can be assured by sorting all
codewords in the very beginning. Then we find the
corresponding vertices for all codewords in a single
group at once, using a left-to-right scan.

3. Finding such suffix for a single codeword can be
performed by running the Knuth-Morris-Pratt al-
gorithm. While the amortized complexity of pro-
cessing a single letter is constant, we have a lot of
different letters that can extend a given codeword,
and the amortization argument does not give a lin-
ear bound in such case.

Consider the automaton recognizing all prefixes
of s from Lemma 4.1, i.e., with the states set
{0, 1, . . . ,m} and the transitions δ(i, a) = max{j :
s[1 . . . j] = s[i − j + 1 . . i]}. If the alphabet is of
unbounded size the simple linear time construction
is no longer possible. Fortunately, the number of
nonzero transitions outgoing from a single vertex is
at most 2 log n, which follows from a well known
fact [6, Lemma 2.32] that π′(2)(k) < k

2 , where



π′ is the so-called strong failure function, defined
as follows: π′(k) is the longest border of s[1 . . k]
such that s[k + 1] 6= s[π′(k) + 1]. In fact much
more is known: due to a result of [17], the total
number of nontrivial transitions is linear in m,
regardless of the size of the alphabet. Using the
atomic heaps of Fredman and Willard [9], we can
maintain a number of collections of polylogarithmic
size, with amortized constant time update and
worst-case constant time look-up, which is enough
to construct the automaton in linear time. Then
we are able to compute the transition function in
constant time per character, which allows us to
process all codewords in linear time. Introducing
the atomic heaps results in a rather complicated
method, and in this particular case it is possible
to significantly simplify this structure because the
universe is of just polynomial size. It does not result
in changing the claimed time bounds, though.

ut

This gives us the final result. Note that in case of
integer alphabets, it is not clear how to avoid reading the
whole input even in the case when there is an occurrence
somewhere in the very beginning.

Theorem 5.1. Pattern matching for LZW compressed
strings over a polynomial size alphabet can be solved in
optimal linear time assuming the word RAM model.

References

[1] A. Amir and G. Benson. Efficient two-dimensional
compressed matching. In Data Compression Confer-
ence, pages 279–288, 1992.

[2] A. Amir, G. Benson, and M. Farach. Let sleeping
files lie: pattern matching in z-compressed files. In
SODA ’94: Proceedings of the fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 705–714,
Philadelphia, PA, USA, 1994. Society for Industrial
and Applied Mathematics.

[3] M. A. Bender and M. Farach-Colton. The lca prob-
lem revisited. In LATIN ’00: Proceedings of the 4th
Latin American Symposium on Theoretical Informat-
ics, pages 88–94, London, UK, 2000. Springer-Verlag.

[4] R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Commun. ACM, 20(10):762–772, 1977.

[5] D. Breslauer. Saving comparisons in the Crochemore-
Perrin string matching algorithm. In In Proc. of 1st
European Symp. on Algorithms, pages 61–72, 1995.

[6] M. Crochemore, C. Hancart, and T. Lecroq. Algo-
rithms on Strings. Cambridge University Press, 2007.

[7] M. Farach. Optimal suffix tree construction with
large alphabets. In FOCS ’97: Proceedings of the

38th Annual Symposium on Foundations of Computer
Science, page 137, Washington, DC, USA, 1997. IEEE
Computer Society.

[8] M. Farach and M. Thorup. String matching in Lempel-
Ziv compressed strings. In STOC ’95: Proceedings of
the twenty-seventh annual ACM symposium on Theory
of computing, pages 703–712, New York, NY, USA,
1995. ACM.

[9] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

[10] Z. Galil. String matching in real time. J. ACM,
28(1):134–149, 1981.

[11] Z. Galil and J. Seiferas. Time-space-optimal string
matching (preliminary report). In STOC ’81: Pro-
ceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 106–113, New York, NY,
USA, 1981. ACM.

[12] L. Gasieniec and W. Rytter. Almost optimal fully
LZW-compressed pattern matching. In DCC ’99: Pro-
ceedings of the Conference on Data Compression, page
316, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

[13] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt.
Fast pattern matching in strings. SIAM J. Comput.,
6(2):323–350, 1977.

[14] S. R. Kosaraju. Pattern matching in compressed texts.
In Proceedings of the 15th Conference on Foundations
of Software Technology and Theoretical Computer Sci-
ence, pages 349–362, London, UK, 1995. Springer-
Verlag.

[15] J. H. Morris, Jr. and V. R. Pratt. A linear pattern-
matching algorithm. Technical Report 40, University
of California, Berkeley, 1970.

[16] G. Navarro and M. Raffinot. A general practical
approach to pattern matching over Ziv-Lempel com-
pressed text. In CPM ’99: Proceedings of the 10th An-
nual Symposium on Combinatorial Pattern Matching,
pages 14–36, London, UK, 1999. Springer-Verlag.

[17] I. Simon. String matching algorithms and automata.
In Proceedings of the Colloquium in Honor of Arto Sa-
lomaa on Results and Trends in Theoretical Computer
Science, pages 386–395, London, UK, 1994. Springer-
Verlag.

[18] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, 1995.

[19] T. A. Welch. A technique for high-performance data
compression. Computer, 17(6):8–19, 1984.

[20] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23:337–343, 1977.


