
Pattern matching in Lempel-Ziv compressed
strings: fast, simple, and deterministic?

Pawe l Gawrychowski

Institute of Computer Science,
University of Wroc law,

ul. Joliot-Curie 15, 50–383 Wroclaw, Poland
gawry@cs.uni.wroc.pl

Abstract. Countless variants of the Lempel-Ziv compression are widely
used in many real-life applications. This paper is concerned with a nat-
ural modification of the classical pattern matching problem inspired by
the popularity of such compression methods: given an uncompressed pat-
tern s[1 . .m] and a Lempel-Ziv representation of a string t[1 . . N], does
s occur in t? Farach and Thorup [6] gave a randomized O(n log2 N

n
+m)

time solution for this problem, where n is the size of the compressed
representation of t. Building on the methods of [4] and [7], we improve
their result by developing a faster and fully deterministic O(n log N

n
+m)

time algorithm. Note that for highly compressible texts, log N
n

might be
of order n, so for such inputs the improvement is very significant. A
(tiny) fragment of our method can be used to give an asymptotically
optimal solution for the substring hashing problem considered by Farach
and Muthukrishnan [5].
Key-words: pattern matching, compression, Lempel-Ziv

1 Introduction

Effective compression methods allow us to decrease the space requirements which
is clearly worth pursuing on its own. On the other hand, we do not want to store
the data just for the sake of having it: we want to process it efficiently on de-
mand. This suggest an interesting direction: can we process the data without
actually decompressing it? Or, in other words, can we speed up processing if
the compression ratio is high? Answer to such questions clearly depends on the
particular compression and processing method chosen. In this paper we focus on
Lempel-Ziv (also known as LZ77, or simply LZ for the sake of brievity), one of
the most commonly used compression methods being the basis of the widely pop-
ular zip and gz archive file formats, and on pattern matching, one of the most
natural text processing problem we might encounter. More specifically, we deal
with the compressed pattern matching problem: given an uncompressed pattern
s[1 . .m] and a LZ representation of a string t[1 . . N], does s occur in t? This line
of research has been addressed before quite a few times already. Amir, Benson,

? Supported by MNiSW grant number N N206 492638, 2010–2012

2 Pawe l Gawrychowski

and Farach [1] considered the problem with LZ replaced by Lempel-Ziv-Welch
(a simpler and easier to implement specialization of LZ), giving two solutions
with complexities O(n logm+m) and O(n+m2), where n is the size of the com-
pressed representation. The latter has been soon improved [12] to O(n+m1+ε).
Then Farach and Thorup [6] considered the problem in its full generality and
gave a (randomized) O(n log2 N

n +m) time algorithm for the LZ case. Their so-
lution consists of two phases, called winding and unwinding, the first one uses a
cleverly chosen potential function, and the second one adds fingerprinting in the
spirit of string hashing first developed by Karp and Rabin [10]. While a recent
result of [8] shows that the winding can be performed in just O(n log N

n), it is
not clear how to use that to improve the whole running time (or remove ran-
domization). In this paper we take a completely different approach, and manage
to develop a O(n log N

n +m) time algorithm. This complements our recent result
from SODA’11 [7] showing that in case of Lempel-Ziv-Welch, the compressed
pattern matching can be solved in optimal linear time. While we were not able
to achieve linear time for the general LZ case, the algorithm developed in this
paper not only significantly improves the previously known time bounds, but also
is fully deterministic and (relatively) simple. Moreover, LZ compression allows
for an exponential decrease in the size of the compressed text, while in LZW n
is at least

√
N . In order to deal with such highly compressible texts efficiently

we need to combine quite a few different ideas, and the nonlinear time of our
(and the previously known) solution might be viewed as an evidence that LZ is
substantially more difficult to deal with than LZW.

2 Overview of the algorithm

Our goal is to detect an occurrence of s in a given Lempel-Ziv compressed text
t[1 . . N]. The Lempel-Ziv representation is quite difficult to work with efficiently,
even for a such simple task as extracting a single letter. The starting point of
our algorithm is thus transforming the input into a straight-line program, which
is a context-free grammar with each nonterminal generating exactly one string.
For that we use the method of Charikar et al. [4] to construct a SLP of size
O(n log N

n) with additional property that all productions are balanced, meaning

that the right sides are of the form XY with α
1−α ≤

|X|
|Y | ≤ 1−α

α for some constant

α, where |X| is the length of the (unique) string generated by X. Note that
Rytter gave a much simpler algorithm [13] with the same size guarantee, using
the so-called AVL grammars. We need the grammar to be balanced, though. We
also need to add one small modification to the method of [4] in order to allow
self-referential LZ compression.

After transforming the text into a balanced SLP, for each nonterminal we
try to check if the string it represents occurs inside s, and if so, compute the
position of (any) its occurrence. Otherwise we would like to compute the longest
prefix (suffix) of this string which is a suffix (prefix) of s. Computing such data
for each nonterminal separately seems rather expensive, and we try to process
the nonterminals in O(logN) groups corresponding to the (truncated) logarithm

Pattern matching in Lempel-Ziv compressed strings 3

of their length. Because of some technical difficulties, we cannot really afford to
check if the represented string occurs in s for each nonterminal exactly, though.
Nevertheless, we can compute some approximation of this information, and by
using a tailored variant of binary search applied to all nonterminals in a single
group at once, we manage to process the whole grammar in time proportional
to its size. The final element of the whole puzzle is a constant time procedure
which detects an occurrence of s inside concatenation of two its substrings.

Because of the space constraints, some proofs are in the appendix.

3 Preliminaries

As usually, |w| stands for the length of w, w[i . . j] refers to its fragment of length
j− i+1 beginning at the i-th character, where characters are numbered starting
from 1. All strings considered in the paper are over an alphabet Σ of polynomial
cardinality, namely Σ = {1, 2, . . . , (n+m)c}. A border of a string w[1 . . |w|] is a
fragment which is both a prefix and a suffix of w, i.e., w[1 . . i] = w[|w|−i+1 . . |w|].
We identify such fragment with its length and say that border(t) = {i1, . . . , ik}
is the set of all borders of t. A period of a string w[1 . . |w|] is an integer p such
that w[i] = w[i+ p] for all 1 ≤ i ≤ |w| − p. Note that p is a period of iff |w| − p
is a border. The following lemma is a well-known property of periods.

Lemma 1 (Periodicity lemma). If p and q are both periods of w, and p+q ≤
|w|+ gcd(p, q), then gcd(p, q) is a period as well.

The Lempel-Ziv representation of a string t[1 . . N] is a sequence of triples
(starti, leni, nexti) for i = 1, 2, . . . , n, where n is the size of the representa-
tion. starti and leni are nonnegative integers, and nexti ∈ Σ. Such triple
refers to a fragment of the text t[starti . . starti + leni − 1] and defines t[1 +∑
j<i lenj . .

∑
j≤i lenj] = t[starti . . starti + leni − 1]nexti. We require that

starti ≤ 1 +
∑
j<i lenj if leni > 0. The representation is not self-referential

if all fragments we are referring to are already defined, i.e., starti + leni − 1 ≤∑
j<i lenj for all i. The sequence of triples is often called the LZ parse of text.
Straight-line program is a context-free grammar in the Chomsky normal form

such that the nonterminals X1, X2, . . . , Xs can be ordered in such a way that
each Xi occurs exactly once as a left side, and whenever Xi → XjXk it holds
that j, k < i. Such grammar derives exactly one string, and we identify each
nonterminal with the unique string it derives, so |X| stands for the length of
the string derived from X. We call a straight-line program (SLP) balanced if for
each production X → Y Z both |Y | and |Z| are bounded by a constant fraction
of |X|.

We preprocess the pattern s using standard tools (suffix trees [14] built
for both the pattern and the reversed pattern, and lowest common ancestor
queries [2]) to get the following primitives.

Lemma 2. Pattern s can be preprocessed in linear time so that given i, j, k
representing any two fragments s[i . . i + k] and s[j . . j + k] we can find their
longest common prefix (suffix) in constant time.

4 Pawe l Gawrychowski

Lemma 3. Pattern s can be preprocessed in linear time so that given any frag-
ment s[i . . j] we can find its longest suffix (prefix) which is a prefix (suffix) of
the whole pattern in constant time, assuming we know the (explicit or implicit)
vertex corresponding to s[i . . j] in the suffix tree built for s (reversed s).

Proof. See the appendix. ut

We will also use the suffix array SA built for s [9]. For each suffix of s we store
its position inside SA, and treat the array as a sequence of strings rather than
a permutation of {1, 2, . . . , |s|}. Given any word w, we will say that it occurs
at position i in the SA if w begins s[SA[i] . . |s|]. Similarly, the fragment of SA
corresponding to w is the (maximal) range of entries at which w occurs.

4 Snippets toolbox

In this section we develop a few efficient procedures operating on fragments of
the pattern, which we call snippets:

Definition 1. A snippet is a substring of the pattern s[i . . j]. If i = 1 we call it
a prefix snippet, if j = m a suffix snippet.

We identify snippets with the substrings they represent, and use |s| to denote
the length of the string represented by s. A snippet is stored as a pair (i, j).

The two results of this section that we are going to use later build heavily on
the contents of [7]. Specifically, Lemma 6 appears there as Lemma 5. To prove it,
we first need the following simple and relatively well known property of borders.

Lemma 4. If the longest border of t is of length b ≥ |t|
2 then all borders of

length at least |t|2 create one arithmetic progression. More specifically, border(t)∩{
|t|
2 , . . . , |t|

}
=
{
|t| − αp : 0 ≤ α ≤ |t|2p

}
, where p = |t| − b is the period of t. We

call this set the long borders of t.

We need to extract borders of prefix and suffix snippets efficiently.

Lemma 5. Pattern s can be preprocessed in linear time so that we can find the
longest border of each its prefix (suffix) in constant time.

The first result tells how to detect an occurrence of the pattern in a concate-
nation of two snippets. We will perform a lot of such operations, and an efficient
implementation is crucial.

Lemma 6 (see Lemma 5 of [7]). Given a prefix snippet and a suffix snippet
we can detect an occurrence of the pattern in their concatenation in constant
time.

Proof. See the appendix. ut

Pattern matching in Lempel-Ziv compressed strings 5

The second result concerning snippets that we need can be deduced from
Lemma 6 and Lemma 8 of [7], but we prefer to present here an explicit proof for
the sake of completeness.

Lemma 7. Given a prefix snippet s1 and a snippet s2 for which we know the
corresponding node in the suffix tree, we can compute the longest prefix of s which

is a suffix of s1s2 in time O
(

max
(

1, log |s1||s2|

))
.

Proof. See the appendix. ut

Note that the running time from the above lemma stays constant as long as
|s1| is bounded from above by a constant fraction of |s2|.

5 Constructing balanced grammar

Recall that a LZ parse is a sequence of triples (starti, leni, nexti) for i =
1, 2, . . . , n. In the not self-referential variant considered in [4], we require that

starti + leni − 1 ≤∑i
j=1 lenj so that each triple refers only to the prefix gener-

ated so far. Although such assumption is made by some LZ-based compressors,
[6] deals with the compressed pattern matching problem in its full generality,
allowing self-references. Thus for the sake of completeness we need to construct
a balanced grammar from a potentially self-referential LZ parse. It turns out
that a small modification of a known method is enough for this task.

Lemma 8 (see Theorem 1 of [4]). Given a (potentially self-referential) LZ
parse of size n, we can build a α-balanced SLP of size O(n log N

n) describing the

same string of length N , for any constant 0 < α ≤ 1−
√
2
2 . Running time of the

construction is proportional to the size of the output.

Proof. See the appendix. ut

As a result we get a context-free grammar in which all nonterminals derive
exactly one string, and right sides of all productions are of the form XY with
α

1−α ≤
|X|
|Y | ≤ 1−α

α . The exact value of α is not important, we only need the fact

that both |X|
|Y | and |Y |

|X| are bounded from above. For the sake of concreteness

we assume α = 0.25. We also need to compute |X| for each nonterminal X,
and to group the nonterminals according to the (rounded down) logarithm of
their length, with the base of the logarithm to be chosen later. Note that taking
logarithms is not necessarily a constant time operations in our model. Of course
we could preprocess logb x for each x ≤ N , but it introduces an additional
O(N ε) addend in the running time. We can use the fact that the grammar is
balanced instead: ifX → Y Z, then logb |X| ≤ β+max (logb |Y |, logb |Z|) for some
constant β depending only on α and b, and the logarithms can be computed for
all nonterminals in a bottom-up fashion using just linear time.

6 Pawe l Gawrychowski

6 Processing balanced grammar

For each nonterminal X we would like to check if the string it represents occurs
inside s. This information seems rather time consuming to extract: it seems that
in order to compute it efficiently we would need to implement a procedure for
detecting if a concatenation of two substrings of s occurs in s as well. In order to
get the claimed running time we would need to answer such queries in constant
time after a linear preprocessing, which seems difficult to achieve. Thus we work
with an approximation of this information instead.

Definition 2. A cover of a nonterminal X is pair of snippets s[i . . i + 2k − 1]
and s[j . . j+ 2k− 1] such that 2k < |X| ≤ 2k+1, s[i . . i+ 2k− 1] is a prefix of the
string represented by X, and s[j . . j+ 2k− 1] is a suffix of the string represented
by X. We call k the order of X’s cover.

We try to find the cover of each nonterminal X. If there is none, we know
that the string it represents does not occur inside s. In such case we compute
prefix(X) (suffix(X)), its longest prefix (suffix) which is a suffix (prefix) of the
whole s. More precisely, we either:

1. compute the cover, in such case the string represented by X might or might
no occur in s,

2. do not compute the cover, in such case the string represented by X does not
occur in s.

As we will see later, it is possible to extract prefix(X) and suffix(X) from the
cover of X using Lemma 7 in constant time, and the information about prefix(X)
and suffix(X) for each nonterminal X is enough to detect an occurrence:

Lemma 9. If s occurs in a string represented by a SLP then there exists a
production X → Y Z such that s occurs in suffix(Y) prefix(Z).

Proof. See the appendix. ut

We process the nonterminals in groups. Nonterminals in the k-th group G` =
{X1, X2, . . . Xs} are chosen so that (4

3)` < |Xi| ≤ (4
3)`+1. The groups are disjoint

so
∑
` |G`| = O(n log N

n). We start with computing the covers of nonterminals in
G1 naively. Then we assume that all nonterminal in G`−1 are already processed,
and we consider G`. Because the grammar is 0.25-balanced, if Xi → YiZi then
|Yi|, |Zi| ≤ 3

4 |Xi|, and Yi, Zi belong to already processed G`′ with `− 5 ≤ `′ < `.
If for some Yi or Zi we do not have the corresponding cover, neither must have
the corresponding Xi, so we use Lemma 7 to calculate prefix(Xi), suffix(Xi), and
remove Xi from G`. For all remaining Xi we are left with the following task: given
the covers of Yi and Zi, compute the cover of Xi, or detect that the represented
string does not occur in s and so we do not have to compute the cover. Note that
the known covers are of order k with kmin =

⌊
` log 4

3

⌋
−3 ≤ k ≤

⌈
` log 4

3

⌉
= kmax.

We reduce computing covers to a sequence of batched queries of the form:
given a sequence of pairs of snippets s[i . . i + 2k1 − 1], s[j . . j + 2k2 − 1] does

Pattern matching in Lempel-Ziv compressed strings 7

their concatenation occur in s, and if so, what is the corresponding snippet? We
call this merging the pair. For each ` we will require solving a constant number
of such problems with kmin ≤ k1, k2 ≤ kmax, each containing O(|G`|) queries.
We call this problem Batched-powers-merge. Before we develop an efficient
solution for such question, lets see how it can be used to compute covers.

s[i..i + 2k1 − 1] s[i..i + 2k2 − 1]w =

merge(b, c)

extend(a)

extend(d)

b c

= length 2k

c

da

Fig. 1. Computing cover of a pair of snippets.

Lemma 10. Computing covers of the nonterminals in any G` can be reduced in
linear time to a constant number of calls to Batched-powers-merge, with the
number of pairs in each call bounded by |G`|.

Proof. Recall that for each given pair of snippets we have their covers available,
and the orders of those covers are from {k, k + 1, . . . , k + 4}. Consider the situ-
ation for a single pair, see Figure 1. First we merge b and c to get merge(b, c).
Then we extend a to the right and d to the left by merging with the correspond-
ing fragments of merge(b, c) of length 2k, and call the results extend(a) and
extend(d). Then we would like iteratively extend both a and d with fragments
of such length as long as it does not result in sticking out of the considered
word w. To do that, we need to have the snippets corresponding to those frag-
ments available. Consider the situation for a: first we extract the snippets from
merge(b, c), then from extend(d). We claim that we are always able to perform
such extraction: if the next 2k characters fall outside merge(b, c), the distance
to the left boundary of d does not exceed 2k and thus we can use extend(d). If
during this extending procedure the merging fails, the pair does not represent
a substring of s. Otherwise we get the snippet corresponding to the prefix and
suffix of w of lengths |w| − |w| mod 2k, which allows us to extract the prefix and
suffix of length 2k

′
where 2k

′
< |w| ≤ 2k

′+1, because k ≤ k′.
To finish the proof, note that for a single pair we need a constant number

of merges. Thus we can do the merging in parallel for all pairs in a constant
number of calls to Batched-powers-merge. ut

Now we only have to develop the algorithm for Batched-powers-merge.
A simple solution would be to do a binary search in the suffix array built for s
for each pair separately: we can compare s[i . . i+ 2k1 − 1]s[j . . j + 2k2 − 1] with
any suffix of s in constant time using at most two LCP queries so the search

8 Pawe l Gawrychowski

takes O(logm) time, which is way too slow. To get a better running time first
observe that we can order all concatenations from a single problem efficiently.

Lemma 11. Given O(|G`|) pairs of words of the form s[i . . i+2k1−1], s[j . . j+
2k2 − 1] with kmin ≤ k1, k2 ≤ kmax we can lexicographically sort their concate-
nations in time O(|G`|+mε) if |kmax − kmin| ∈ O(1).

Proof. We split the words to be sorted into a constant number of chunks of
length 2kmin . Then we would like to assign numbers to those chunks so that
nr(s[i . . i + 2kmin − 1]) < nr(s[j . . j + 2kmin − 1]) iff s[i . . i + 2kmin − 1]) <lex
s[j . . j + 2kmin − 1]). To compute all nr(s[i . . i + 2kmin − 1]) we retrieve the
positions of s[i . .m] in the suffix array. Then we sort the resulting list of O(|G`|)
integers using radix sort, i.e., by 1

ε rounds of counting sort. The time required
by this sorting is linear plus O(mε). After sorting we scan the list and identify
different suffixes with the same prefix of length 2kmin , such suffixes belong to
continuous blocks whose boundaries can be identified using LCP queries. Then
the original task reduces to sorting a list of constant length vectors consisting of
integers not exceeding m, which can be done efficiently using radix sort. ut

We apply the above lemma to all calls to Batched-powers-merge cor-
responding to nonempty G`. If (4

3)` > m then clearly the corresponding G` is
empty, so the total running time of this part is just O(mε logm +

∑
` |G`|) =

O(m+ n log N
n). Now that the queries are sorted, we can try to reuse the infor-

mation acquired during binary search. For example, we can start the search for
a given pair starting from the place where the lexicographically previous pair
was found at. This might be still too slow though. To accelerate the search we
develop a constant time procedure for locating the fragment of the suffix array
corresponding to all occurrences of any s[i . . i+ 2k − 1].

Lemma 12. The pattern s can be processed in linear time so that given any
s[i . . i + 2k − 1] we can compute its first and the last occurrence in the suffix
array of s in constant time.

Proof. It is enough to show that the suffix tree T built for s can be preprocessed
in linear time so that we can locate the (implicit or explicit) vertex corresponding
to any fragment which is a power of 2 in constant time. For that we should
locate an ancestor of a given leaf which is at specified depth 2k. This can be
reduced to the so-called weighted ancestor queries: given a node-weighted tree,
with the weights nondecreasing on any root-to-leaf path, preprocess it to find the
predecessor of a given weight among the ancestors of v efficiently. Unfortunately,
all known solutions for this problem [5,11] give nonconstant query time. We wish
to improve this time by abusing the fact that only ancestors at depths 2k are
sought. First note that such ancestor is not necessarily an explicit vertex. We
start with considering all edges of T . For each such edge e, we compute the
smallest k such that e contains an implicit vertex at depth 2k (there might be
none), and split the edge to make it explicit. We call all original vertices at
depths being powers of 2, and all new vertices, marked. For each leaf v we would

Pattern matching in Lempel-Ziv compressed strings 9

like to compute the depths of all its marked ancestors marked(v). This can be
done in linear time by a single top-bottom transversal, and the information can
be stored in a single Θ(log |s|)-bit word. Then we construct T ′ = compress(T)
containing only the leaves and marked vertices of T by collapsing all maximal
fragments of T without such vertices. Then we build the level ancestor data
structure for T ′ [3] allowing us to find the k-th ancestor of any vertex in constant
time. Now given i and k we first locate the leaf v corresponding to s[i . . |s|] in T ,
then take a look at its bitvector marked(v). We can compute in constant time
` = {k′ > k : k′ ∈ marked(v)} and retrieve the `-th ancestor of v in T ′. Going
back to T we get a node with the same (lexicographically) smallest and largest
suffix in its subtree as the node corresponding to s[i . . i+ 2k− 1]. In fact can use
a simpler solution because the depth of T ′ is just log n. See the appendix. ut

Observe that the above lemma can be used to give an optimal solution for a slight
relaxation of the substring fingerprints problem considered in [5]. This problem
is defined as follows: given a string s, preprocess it to compute any substring
hash hs(s[i . . j]) efficiently. We require that:

1. hs(s[i . . j]) ∈ [1,O(|s|2)] so that the values can be operated on efficiently,
2. hs(s[i . . j]) = hs(s[k . . l]) iff s[i . . j] = s[k . . l].

If we allow the range of hs to be slightly larger, say O(|s|3), a direct application
of the above lemma allows us to evalute the fingerprints in constant time after
a linear preprocessing.

Theorem 1. Substring fingerprints of size O(|s|3) can be computed in constant
time after a linear time preprocessing.

Proof. See the appendix. ut

While the range of hs is not optimal, it can be evaluated and operated on in
constant time which should be enough to replace the results of [5].

Now getting back to the original question, to locate w = s[i . . i + 2k1 −
1]s[j . . j+2k2−1] in the suffix array, we first look up the fragment corresponding
to its prefix s[i . . i + 2kmin − 1] using Lemma 12. Then we apply binary search
in this fragment, with the exception that if the previous binary search was in
this fragment as well, we start from the position it finished, not the beginning
of the fragment. Additionally, the binary search is performed starting from the
beginning and the end of the interval at the same time, see Two-way-binary-
search below. If the initial interval is [a, b] and the position we are after is r, the
running time of such modified search is O(log min(r− a+ 1, b− r+ 1)) because
we can compare w with any s[i . . |s|] in constant time using at most two LCP
queries. The standard method results in a slightly worse O(log(b− a+ 1)) time,
and it turns out that the decreasing this time is extremely useful.

The goal of Batched-powers-merge is to search for the first occurrence
of a string in the suffix array. A sequence of such searches should be seen as
follows: we keep a partition of the whole [1, |s|] into a number of disjoint intervals.
Doing a single search splits at most one interval into two parts at the position

10 Pawe l Gawrychowski

Algorithm 1 Two-way-binary-search(a, b, w)

1: x← a, y ← b
2: k ← 1
3: while 2k ≤ b− a do
4: if w <lex s[SA[a + 2k]] then
5: y ← a + 2k

6: break
7: end if
8: if s[SA[b− 2k]] <lex w then
9: x← b− 2k

10: break
11: end if
12: k ← k + 1
13: end while
14: r ← binary search for w in s[SA[x] . . |s|], s[SA[x + 1] . . |s|], . . . , s[SA[y] . . |s|]
15: return r

of the first occurrence. If the first occurrence is exactly at an already existing
boundary, there is no split, otherwise we say that those two smaller intervals
have been created in phase kmin (recall that kmin linearly depends on `), and
intervals created in phase kmin are kept in a list Ikmin

. We will prune those lists
to contain just the minimal under inclusion intervals.

Lemma 13. All O(logm) calls to Batched-powers-merge run in total time
O(m+

∑
` |G`|).

Proof. First note that the sorting in line 16 can be performed in time O(mε +
|Ikmin

|+ |G`|) using radix sort. Line 1 takes time O(mε+ |G`|) due to Lemma 11,
and line 2 requires O(|Ikmin |+ |G`|). All executions of line 7 take time O(|Ikmin |)
because the words wi are already sorted. For the time being assume that the
binary search in line 13 is for free. Then the total complexity becomes O(

∑
im

ε+∣∣∣I(i)kmin

∣∣∣ + |G`|) where
∣∣∣I(i)kmin

∣∣∣ is the size of Ikmin
just before the i-th call to

Batched-powers-merge. There is a constant number of those calls for each
value of 1 ≤ ` ≤ m, and each kmin corresponds to at most constant number of
different continuous values of `, thus the sum is in fact O(m+

∑
` |G`|).

To finish the proof we have to bound the time taken by all binary searches.
For that to happen we will view the intervals as vertices of a tree. Whenever
we split an interval into two, we add a left and right child to the corresponding
leaf v. The rank rank(v) of a vertex v is the rounded logarithm of its weight,
which is the length of the corresponding interval. Then the cost of line 13 is
simply O(1) plus min(rank(left(v)), rank(right(v))) where left(v) and right(v)
are the left and right child of v, respectively. Hence we should bound the sum∑
v min(left(v), right(v)), where v is a non-leaf. We say that a vertex is charged

when its weight does not exceed the weight of its brother. Now we claim that
there are at most m

2k
charged vertices of rank k: assume that there are u and v

such that u is an ancestor of v, both are charged and of rank k, then weight of v

Pattern matching in Lempel-Ziv compressed strings 11

plus weight of its brother is at least twice as large as the weight of v alone, thus
the rank of their parent is larger than the rank of v, contradiction. So all charged
vertices of the same rank correspond to disjoint intervals, and there cannot be
more than m

2k
disjoint intervals of length at least 2k on a segment of length m.

Now we can bound the sum which gives the claim:∑
v

min(rank(left(v)), rank(right(v))) ≤
logm∑
k≥0

k
m

2k
≤ m

∞∑
k≥0

k

2k
= 2m ut

Algorithm 2 Batched-powers-merge(w1, w2, . . . , w|G`|)

1: sort all wi . Lemma 11
2: scan Ikmin to find the intervals containing wi

3: L← ∅
4: r0 ← 1
5: for i← 1 to |G`| do
6: [a, b]← the interval corresponding to wi[1 . . 2

kmin] in SA . Lemma 12
7: choose [c, d] ∈ Ikmin containing the first occurrence of wi in SA
8: if [c, d] is defined then
9: a← max(a, c)

10: b← min(b, d)
11: end if
12: a← max(ri−1, a)
13: ri ← Two-way-binary-search(a, b, wi)
14: add [a, ri] and [ri, b] to L
15: end for
16: sort L and merge it with Ikmin , removing non-minimal intervals
17: return all answers ri

If for a production X → Y Z we cannot find the cover of X, we compute
prefix(X) and suffix(X) given the covers of Y and Z.

Lemma 14. Given the covers of Y and Z, we can compute prefix(X) and

suffix(X) in constant time as long as |Y ||Z| and |Z|
|Y | are bounded from above by

a constant. To compute prefix(X) we can use prefix(Z) instead of the cover of
Z, and suffix(X) can be replaced with suffix(Y) instead of the cover of Y .

Proof. Use Lemma 7 with carefully chosen arguments, see the appendix. ut
Theorem 2. Given a 0.25-balanced SLP of size O(n log N

n) and a pattern s[1 . .m],

we can detect an occurrence of s in the represented text in time O(n log N
n +m).

Proof. By Lemma 10 and Lemma 13 we compute the covers of all nonterminals
which represent subwords of s in time O(n log N

n +m). For the remaining nonter-
minals X we use Lemma 14 to compute prefix(X) and suffix(X) in total linear
time considering the nonterminals in bottom-up order. Then due to Lemma 9
if there is an occurrence of s, there is an occurrence in prefix(Y) suffix(Z) for
some production X → Y Z. We consider every nonterminal X, either lookup the
already computed prefix(Y) and suffix(Z) or compute them using the known
covers and Lemma 14, and use Lemma 6 to detect a possible occurrence. ut

12 Pawe l Gawrychowski

By using Lemma 8 and Theorem 2 we get the final result.

Theorem 3. Given a (potentially self-referential) Lempel-Ziv parse of size n
describing a text t[1 . . N] and a pattern s[1 . .m], we can detect an occurrence of
s inside t deterministically in time O(n log N

n +m).

References

1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: pattern matching in z-
compressed files. In SODA ’94: Proceedings of the fifth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 705–714, Philadelphia, PA, USA, 1994. Society
for Industrial and Applied Mathematics.

2. M. A. Bender and M. Farach-Colton. The lca problem revisited. In LATIN ’00: Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informatics, pages
88–94, London, UK, 2000. Springer-Verlag.

3. M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004.

4. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sa-
hai, and a. shelat. Approximating the smallest grammar: Kolmogorov complexity
in natural models. In STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 792–801, New York, NY, USA, 2002.
ACM.

5. M. Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and
algorithms. In CPM ’96: Proceedings of the 7th Annual Symposium on Combina-
torial Pattern Matching, pages 130–140, London, UK, 1996. Springer-Verlag.

6. M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. In
STOC ’95: Proceedings of the twenty-seventh annual ACM symposium on Theory
of computing, pages 703–712, New York, NY, USA, 1995. ACM.

7. P. Gawrychowski. Optimal pattern matching in LZW compressed strings. In SODA
’11: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete
algorithms, to appear.

8. J. Iacono and Ö. Özkan. Mergeable dictionaries. In ICALP (1), pages 164–175,
2010.

9. J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction.
J. ACM, 53(6):918–936, 2006.

10. R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

11. T. Kopelowitz and M. Lewenstein. Dynamic weighted ancestors. In SODA ’07: Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 565–574, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

12. S. R. Kosaraju. Pattern matching in compressed texts. In Proceedings of the
15th Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 349–362, London, UK, 1995. Springer-Verlag.

13. W. Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

14. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,
1995.

Pattern matching in Lempel-Ziv compressed strings 13

Lemma 3. Pattern s can be preprocessed in linear time so that given any frag-
ment s[i . . j] we can find its longest suffix (prefix) which is a prefix (suffix) of
the whole pattern in constant time, assuming we know the (explicit or implicit)
vertex corresponding to s[i . . j] in the suffix tree built for s (reversed s).

Proof. We assume that the suffix tree is built for s concatenated with a special
terminating character, say $. Each leaf in the suffix tree corresponds to some
suffix of s, and is connected to its parent with an edge labeled with a single
letter. If we mark all those parents, finding the longest prefix which is a suffix of
the whole s reduces to finding the lowest marked vertex on a given path leading
the root, which can be precomputed for all vertices in linear time. ut
Lemma 6 (see Lemma 5 of [7]). Given a prefix snippet and a suffix snippet
we can detect an occurrence of the pattern in their concatenation in constant
time.

Proof. We need to answer the following question: does s occur in s[1 . . i]s[j . .m]?
Or, in other words, is there x ∈ border(s[1 . . i]) and y ∈ border(s[j . .m]) such

that x+ y = m? Note that either x ≥ |s[1..i]|2 or y ≥ |s[j..m]|
2 , and without losing

the generality assume the former. From Lemma 4 we know that all such possible
values of x create one arithmetic progression. More specifically, x = i−αp, where
p ≤ i

2 is the period of s[1 . . i] extracted using Lemma 5. We need to check if
there is an occurrence of s in s[1 . . i]s[j . .m] starting after the αp-th character,
for some 0 ≤ α ≤ i

p . For any such possible interesting shift, there will be no

mismatch in s[1 . . i]. There might be a mismatch in s[j . .m], though.
Let k ≥ i be the longest prefix of s for which p is a period (such k can be

calculated efficiently by looking up the longest common prefix of s[p + 1 . .m]

and the whole s). We shift s[1 . . k] by
⌊
min(i,i−j+1)

p

⌋
p characters. Note this is the

maximal shift of the form αp which, after extending s[1 . . k] to the whole s, does
not result in sticking out of the right end of s[j . .m]. Then compute the leftmost
mismatch of the shifted s[1 . . k] with s[j . .m], see Figure 2. Position of the first
mismatch, or its nonexistence, allows us to eliminate all but one interesting shift.
More precisely, we have two cases to consider.

1. There is no mismatch. If k = m we are done, otherwise s[k+1] 6= s[k+1−p],
meaning that choosing any smaller interesting shift results in a mismatch.

2. There is a mismatch. Let the conflicting characters be a and b and call the
position at which a occurs in the concatenation the obstacle. Observe that
we must choose a shift αp so that s[1 . . k] shifted by αp is completely on
the left of the obstacle. On the other hand, if s[1 . . k] shifted by (α+ 1)p is
completely on the left as well, shifting s[1 . . k] by αp results in a mismatch
because s[k+1] 6= s[k+1−p] and s[k+1−p] matches with the corresponding
character in s[j . .m]. Thus we may restrict our attention to the largest shift
for which s[1 . . k] is on the left of the obstacle.

Having identified the only interesting shift, we verify if there is a match using
one longest common prefix query on s. More precisely, if the shit is αp, we check

14 Pawe l Gawrychowski

if the common prefix of s[i − αp . .m] and s[j . .m] is of length |s[i − αp . .m]|.
Overall, the whole procedure takes constant time. ut

s[1..i] s[j..m]

p s[1..k]

a

b

obstacle

Fig. 2. Detecting an occurrence in a concatenation of two snippets.

Lemma 7. Given a prefix snippet s1 and a snippet s2 for which we know the
corresponding node in the suffix tree, we can compute the longest prefix of s which

is a suffix of s1s2 in time O
(

max
(

1, log |s1||s2|

))
.

Proof. We try to find the longest border of s1 = s[1 . . i] which can be extended
with s2. If there is none, we use Lemma 3 on s2 to extract the answer. Of course
s1 might happen to have quite a lot of borders, and we do not have enough
time to go through each of them separately. We try to abuse Lemma 4 instead:
there are just log |s1| groups of borders, and we are going to process each of
them in constant time. It is not enough though, we need something faster when
|s2| is relatively big compared to |s1|. The whole method works as follows: as
long as |s2| is smaller than 2|s1|, we check if it is possible to extend any of the
long borders of s1. If it is not possible, we replace s1 with the longest prefix of

s which ends s1[|s1|2 . . |s1|] (we can preprocess such information for all prefixes
of s in linear time). When |s2| exceeds 2|s1|, we look for an occurrence of s2
in a prefix of s of length |s1| + |s2|. All such occurrences create one arithmetic
progression due to Lemma 4, and it is possible to detect which one is preceded
by a suffix of s1 in constant time. More specifically, we show how to implement in
constant time the following two primitives. In both cases the method resembles
the one from Lemma 6.

1. Computing the longest long border of s1 which can be extended with s2 to
form a prefix of s, if any. First we compute the period p of s1 in constant

time due to Lemma 3, then p ≤ |s1|
2 and any long border begins after the

αp-th letter, for some α ≥ 0. We compute how far the period extends in both
s and s2, this gives us a simple arithmetic condition on the smallest value of
α. More explicitly, there is either at most one valid α, or all are correct.

2. Detecting the rightmost occurrence of s2 in s preceded by a suffix of s1,
assuming |s2| ≥ 2|s1|. We begin with finding the first and the second occur-
rence of s2 in s. Assuming we have the corresponding vertex in the suffix tree
available, this takes just constant time. We check those (at most) two occur-
rences naively. There might be many more of them, though. But if the two

Pattern matching in Lempel-Ziv compressed strings 15

first occurrences begin before the |s1|-th character, we know that all other
interesting occurrences form one arithmetic progression with the known pe-
riod of s2. We check how far the period extends in s1 (starting from the right
end) and s (starting from the first occurrence of s2), this again gives us a
simple arithmetic condition on the best possible shift.

ut

Lemma 8 (see Theorem 1 of [4]). Given a (potentially self-referential) LZ
parse of size n, we can build a α-balanced SLP of size O(n log N

n) describing the

same string of length N , for any constant 0 < α ≤ 1−
√
2
2 . Running time of the

construction is proportional to the size of the output.

Proof. At a very high level, the idea of [4] is to process the parse from left-
to-right. When processing a triple (starti, leni, nexti), we already have an α-
balanced SLP describing the prefix of the whole text corresponding to the pre-
viously encountered triples. Because the grammar is balanced, we can define
t[starti . . starti+ leni−1] by introducing a relatively small number of new non-
terminals (with small actually meaning small in the amortized sense). Now if
we allow the parse to be self-referential, it might happen that t[starti . . starti +

leni − 1] sticks out from the right end of t[1 . .
∑i−1
j=1 lenj]. In such case we do

as follows: let L =
∑i−1
j=1 lenj , and split the fragment corresponding to the cur-

rent triple into three parts. First we have t[starti . . L], then some repetitions
of the same fragment, and then t[starti . . leni mod (L − starti + 1)] followed
by a single letter nexti. After defining a nonterminal deriving t[starti . . L], we
can define a nonterminal deriving the repetitions at the expense of introduc-
ing at most 2 log leni new nonterminals. Then we define a nonterminal deriving
t[starti . . leni mod (L−starti+1)]nexti. The only change in the analysis of this
method is that we might end up adding

∑n
i=1 log leni new nonterminals, which

by the concavity of log is at most O(n log N
n), and thus does not change the

asymptotic upper bound.
Note that the algorithm in [4] contains one special case: if the compression

ratio is at most 2e, the trivial grammar is returned. We do the same. ut

Lemma 9. If s occurs in a string represented by a SLP then there exists a
production X → Y Z such that s occurs in suffix(Y) prefix(Z).

Proof. Consider the leftmost occurrence of s. Take the starting symbol X = S
and its production X → Y Z. If the leftmost occurrence is completely inside Y
or Z, repeat with X replaced with Y or Z. Otherwise the occurrence crosses
the boundary between Y and Z, in other words there is a prefix snippet s[1 . . i]
ending Y and a suffix snippet s[i + 1 . .m] starting Z. Then |suffix(Y)| ≥ i and
|prefix(Z)| ≥ m− i, and s occurs in suffix(Y) prefix(Z). ut

Lemma 12. The pattern s can be processed in linear time so that given any
s[i . . i + 2k − 1] we can compute its first and the last occurrence in the suffix
array of s in constant time.

16 Pawe l Gawrychowski

Proof. First we use the standard micro-macro tree decomposition, which gives us
a top fragment containing just n

logn leaves, and a collection of small trees on at
most log n leaves. Note that in this particular case, the total number of vertices
cannot be much larger than the number of leaves: the original tree contained
vertices with outdegree 1, then we introduced at most one such vertex at each
edge, and then we collapsed some parts of the tree. For each node in the top
tree we store all log n answers explicitly. For each small tree we do as follows:
first number its nodes in a depth-first order, then for each node compute a single
bitvector containing the numbers of all its ancestors. To find the k-th ancestor
of a given vertex v, we consider two cases.

1. v belongs to the top tree. Then we have the answer available.
2. v belongs to some small tree. We first check in constant time if its depth in

this small tree does not exceed k. If it does, we can use the precomputed
answers stored for the parent (in the top tree) of the root. Otherwise we take
a look at the bitvector corresponding to v, and find its k-th highest bit set
to 1. Then we retrieve the node corresponding to this depth-first number.

ut

Y Z

b cc

da

prefix(d)

prefix1

prefix3

(1)

(2)

(3)

(4)

prefix2

Fig. 3. Computing prefix(X) given the covers of Y and Z.

Theorem 1. Substring fingerprints of size O(|s|3) can be computed in constant
time after a linear time preprocessing.

Proof. First we apply the preprocessing from Lemma 12 to s. We also store
blog xc for any 1 ≤ x ≤ |s|. Then given a query s[i . . j] we compute k =
blog(j − i+ 1)c and using constant time level ancestors queries we locate the
lowest existing ancestors of both s[i . . i+2k−1] and s[j−2k+1 . . j] in the suffix
tree. Then hs(s[i . . j]) is a triple containing j− i+1 and those two ancestors. ut

Lemma 14. Given the covers of Y and Z, we can compute prefix(X) and

suffix(X) in constant time as long as |Y ||Z| and |Z|
|Y | are bounded from above by

a constant. To compute prefix(X) we can use prefix(Z) instead of the cover of
Z, and suffix(X) can be replaced with suffix(Y) instead of the cover of Y .

Pattern matching in Lempel-Ziv compressed strings 17

Proof. It is enough to consider prefix(X). The idea is to use a few application
of Lemma 7 with carefully chosen arguments, see Figure 3. More specifically, let
a, b and c, d be the covers of Y and Z, respectively. First we locate the vertex
corresponding to d in the suffix tree, due to Lemma 12 and |d| = 2k it takes
constant time, then:

(1) apply Lemma 3 to compute prefix(d) if we have the cover of Z, otherwise
take the known prefix(Z) and go to (3),

(2) apply Lemma 7 to c and prefix(d) without the first |c|+ |d| − |Z| letters to
get prefix1,

(3) apply Lemma 7 to b and prefix1 to get prefix2,
(4) apply Lemma 7 to a and prefix2 without the first |a|+ |b|− |Y | letters to get

the desired answer prefix3.

Note that whenever we apply the lemma to two words u and v, |v| is a power
of 2 and so we can use Lemma 12 to locate its corresponding node in constant

time. Also, it holds that |u| ≥ min(|Y |,|Z|)
2 and |v| ≤ |Y |+ |Z| and so the running

time is bounded by:

max

(
1, log

|v|
|u|

)
≤ max

(
1, log

(|Y |+ |Z|
min(|Y |, |Z|)

))
= log

(
1 +

max(|Y |, |Z|)
min(|Y |, |Z|)

)
which is O(1). ut

