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We put a pre-existing definitional abstract machine for dynamic delimited continuations in defunctionalized

form, and we present the consequences of this adjustment. We first prove the correctness of the adjusted

abstract machine. Because it is in defunctionalized form, we can refunctionalize it into a higher-order
evaluation function. This evaluation function, which is compositional, is in continuation+state passing

style and threads a trail of delimited continuations and a meta-continuation. Since this style accounts for

dynamic delimited continuations, we refer to it as ‘dynamic continuation-passing style’ and we present the
corresponding dynamic CPS transformation. We show that the notion of computation induced by dynamic

CPS takes the form of a continuation monad with a recursive answer type. This continuation monad
suggests a new simulation of dynamic delimited continuations in terms of static ones. Finally, we present

new applications of dynamic delimited continuations, including a meta-circular evaluator. The significance of

the present work is that the computational artifacts surrounding dynamic CPS are not independent designs:
they are mechanical consequences of having put the definitional abstract machine in defunctionalized form.

Categories and Subject Descriptors: D.1.1 [Software]: Programming Techniques—applicative (functional)

programming; D.3.2 [Programming Languages]: Language Classifications—applicative (functional) lan-
guages; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro-

grams—Specification techniques; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical

Logic—Lambda calculus and related systems.

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: delimited continuations

1. INTRODUCTION

The control operator call/cc [Clinger et al. 1985; Harper et al. 1993; Kelsey et al. 1998;
Reynolds 1972], by now, is an accepted component in the landscape of eager functional
programming, where it provides the expressive power of CPS (continuation-passing style)
in direct-style programs. An integral part of its success is its surrounding array of com-
putational artifacts: simple motivating examples as well as more complex applications,
a functional encoding in the form of a continuation-passing evaluator, the corresponding
continuation-passing style and CPS transformation, their first-order counterparts (e.g., the
corresponding abstract machine), and the continuation monad.

The delimited-control operators control (alias F) and prompt (alias #) [Felleisen 1988;
Felleisen et al. 1988; Sitaram and Felleisen 1990a] were designed to go ‘beyond continua-
tions’ [Felleisen et al. 1987]. This vision was investigated in the early 1990’s [Gunter et al.
1995; Hieb and Dybvig 1990; Hieb et al. 1993; Moreau and Queinnec 1994; Queinnec and
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Serpette 1991; Sitaram and Felleisen 1990b] and it has received renewed attention in the
2000’s: Shan and Kiselyov are studying its simulation properties [Kiselyov 2005; Shan 2007],
and Dybvig, Peyton Jones, and Sabry proposed a general framework where multiple control
delimiters can coexist [2007].

We observe, though, that none of these investigations of control and prompt uses the entire
array of artifacts that organically surrounds call/cc. Our goal here is to do so.

This work. We present an abstract machine that accounts for dynamic delimited con-
tinuations and that is in defunctionalized form with respect to its contexts [Danvy and
Millikin 2009; Danvy and Nielsen 2001; Reynolds 1972], and we prove its equivalence with
a definitional abstract machine that is not in defunctionalized form. We also present the
corresponding higher-order evaluator from which one can obtain the corresponding CPS
transformer. The resulting ‘dynamic continuation-passing style’ (dynamic CPS) threads a
list of trailing delimited continuations, i.e., it is a continuation+state-passing style. This
style is equivalent to, but simpler than, the one proposed by Shan [2007]. It is structurally
related to the one proposed by Dybvig, Peyton Jones, and Sabry [2007]. We also show that
it corresponds to a computational monad, and we present some new examples.

Overview. We first present the definitional machine for dynamic delimited continuations
in Section 2. In Section 3, we put the definitional machine into defunctionalized form with
respect to its contexts and we establish the equivalence of the two machines in Section 4.
We present the corresponding higher-order evaluator, which is compositional, in Section 5.
This evaluator is expressed in a dynamic continuation-passing style and we present the
corresponding dynamic CPS transformer in Section 6 and the corresponding direct-style
evaluator in Section 7: transforming this direct-style evaluator into dynamic CPS yields
the evaluator of Section 5 – a coherence property. We illustrate dynamic continuation-
passing style in Section 8 and in Section 9, we show that it can be characterized with
a computational monad: macro-expanding the definition of this monad into a monadic
evaluator and CPS transforming the result yields a curried version of the evaluator of
Section 5 – another coherence property. In Section 10, we present a new simulation of
control and prompt based on dynamic CPS. We then address related work in Section 11
and conclude in Section 12. In Appendices A and B, we consider the abstract machines
corresponding to the control operators control0 and shift0. For completeness, Appendix C
reproduces Filinski’s ML implementation of shift and reset [1994].

Prerequisites and notation. We assume some basic familiarity with operational semantics,
abstract machines, eager functional programming in (Standard) ML, defunctionalization,
and continuations.

2. THE DEFINITIONAL ABSTRACT MACHINE

In our earlier work [Biernacka et al. 2005], we obtained an environment-based1 abstract
machine for the static delimited-control operators shift and reset by defunctionalizing a
definitional evaluator that had two layered continuations [Danvy and Filinski 1990; 1992].
In this abstract machine, the first continuation takes the form of an evaluation context and
the second takes the form of a stack of evaluation contexts. By construction, this abstract
machine is an extension of Felleisen et al.’s CEK machine [Felleisen and Friedman 1986],
which has one evaluation context and was itself conceived as a defunctionalized environment-
based evaluator with one continuation [Reynolds 1972].

1An environment ρ is a partial function mapping identifiers to values, whose domain is denoted by dom (ρ).
ρmt is the empty environment, i.e., a function such that dom (ρmt ) = ∅, whereas ρ{x 7→ v} is the environment
ρ modified or extended with a binding of x to v.
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Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e
Values (closures and captured continuations): v ::= [x , e, ρ] | C1

Environments: ρ – partial functions mapping variables to values
Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)
Concatenation of contexts:

END ? C ′1
def
= C ′1

(ARG ((e, ρ), C1)) ? C ′1
def
= ARG ((e, ρ), C1 ? C

′
1)

(FUN (v, C1)) ? C ′1
def
= FUN (v, C1 ? C

′
1)

Meta-contexts: C2 ::= nil | C1 :: C2

Initial transition, transition rules, and final transition:

e ⇒def 〈e, ρmt , END, nil〉eval

〈x , ρ, C1, C2〉eval ⇒def 〈C1, ρ(x ), C2〉cont1
〈λx .e, ρ, C1, C2〉eval ⇒def 〈C1, [x , e, ρ], C2〉cont1
〈e0 e1, ρ, C1, C2〉eval ⇒def 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval

〈#e, ρ, C1, C2〉eval ⇒def 〈e, ρ, END, C1 :: C2〉eval

〈Fx .e, ρ, C1, C2〉eval ⇒def 〈e, ρ{x 7→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒def 〈C2, v〉cont2
〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒def 〈e, ρ, FUN (v, C1), C2〉eval

〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒def 〈e, ρ{x 7→ v}, C1, C2〉eval
〈FUN (C ′1, C1), v, C2〉cont1 ⇒def 〈C ′1 ? C1, v, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒def 〈C1, v, C2〉cont1
〈nil, v〉cont2 ⇒def v

Fig. 1. The definitional call-by-value abstract machine
for the λ-calculus extended with F and #

The abstract machine for static delimited continuations implements the application of
a delimited continuation (represented as a captured context) by pushing the current con-
text onto the stack of contexts and installing the captured context as the new current
context [Biernacka et al. 2005]. In contrast, the abstract machine for dynamic delimited
continuations implements the application of a delimited continuation (also represented as a
captured context) by concatenating the captured context to the current context [Felleisen
et al. 1988]. As a result, static and dynamic delimited continuations differ because a subse-
quent control operation will capture either the remainder of the reinstated context (in the
static case, by analogy with the static environment of Scheme, ML, Haskell, or Algol) or the
remainder of the reinstated context together with the then-current context (in the dynamic
case, by analogy with the dynamic environment of Lisp). An abstract machine implement-
ing dynamic delimited continuations therefore a priori requires defining an operation to
concatenate contexts.
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Figure 1 displays the definitional abstract machine for dynamic delimited continuations,
including the operation to concatenate contexts. It only differs from our earlier abstract
machine for static delimited continuations [Biernacka et al. 2005, Figure 7 and Section 4.5] in
the way captured delimited continuations are applied, by concatenating their representation
with the representation of the current continuation (the shaded transition in Figure 1).2

Biernacka and Danvy present the corresponding calculus elsewhere [2007, Section 6.2].
Contexts form a monoid:

Proposition 1. The operation ? defined in Figure 1 satisfies the following properties:

(1 ) C1 ? END = C1 = END ? C1,
(2 ) (C1 ? C

′
1) ? C ′′1 = C1 ? (C ′1 ? C

′′
1 ).

Proof. By induction on the structure of C1.

In the definitional machine, the constructors of contexts are not solely consumed in the
cont1 transitions, but also by ?. Therefore, the definitional abstract machine is not in the
range of defunctionalization [Danvy and Millikin 2009]: it does not correspond to a higher-
order evaluator. In the next section, we present a new abstract machine that implements
dynamic delimited continuations and is in the range of defunctionalization.

3. THE ADJUSTED ABSTRACT MACHINE

The definitional machine is not in the range of defunctionalization because of the concate-
nation of contexts. We therefore introduce a new component in the machine to avoid this
concatenation. This new component, the trail of contexts, holds the then-current contexts
that would have been concatenated to the captured context in the definitional machine.
These then-current contexts are then reinstated in turn when the captured context com-
pletes. Together, the current context and the trail of contexts represent the current dynamic
context. The final component of the machine holds a stack of dynamic contexts (represented
as a list: nil denotes the empty list, the infix operator :: denotes list construction, and the
infix operator @ denotes list concatenation, as in ML).

Figure 2 displays the new abstract machine for dynamic delimited continuations. It only
differs from the definitional abstract machine in the way dynamic contexts are represented
(a context and a trail of contexts (represented as a list) instead of one concatenated context).
In Section 4, we establish the equivalence of the two machines.

In the new machine, the constructors of contexts are solely consumed in the cont1 tran-
sitions. Therefore the new machine, unlike the definitional machine, is in the range of de-
functionalization with respect to the contexts and the cont1 transitions [Danvy and Millikin
2009]: it can be refunctionalized into a higher-order evaluator, which we present in Section 5.

N.B.: The trail concatenation, in Figure 2, could be avoided by adding a new component to
the machine—a meta-trail of pairs of contexts and trails, managed last-in, first-out—and the
corresponding new transitions. A captured continuation would then be a triple of context,
trail, and meta-trail, and applying it would require this meta-trail to be concatenated to the
current trail. In turn, this concatenation could be avoided by adding a meta-meta-trail, etc.
Because each of the metan-trails (for n ≥ 1) but the last one has one point of consumption,
they all are in defunctionalized form except the last one. Adding metan-trails amounts to
trading space for time: in the common case where control has not been abstracted and
reinstated, the trails are empty.

2In contrast, static delimited continuations are applied as follows:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒ 〈C′

1, v, C1 :: C2〉cont1
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Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e
Values (closures and captured continuations): v ::= [x , e, ρ] | [C1, T1]
Environments: ρ – partial functions mapping variables to values
Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)
Trails of contexts: T1 ::= nil | C1 :: T1
Meta-contexts: C2 ::= nil | (C1, T1) :: C2

Initial transition, transition rules, and final transition:

e ⇒adj 〈e, ρmt , END, nil, nil〉eval

〈x , ρ, C1, T1, C2〉eval ⇒adj 〈C1, ρ(x ), T1, C2〉cont1
〈λx .e, ρ, C1, T1, C2〉eval ⇒adj 〈C1, [x , e, ρ], T1, C2〉cont1
〈e0 e1, ρ, C1, T1, C2〉eval ⇒adj 〈e0, ρ, ARG ((e1, ρ), C1), T1, C2〉eval

〈#e, ρ, C1, T1, C2〉eval ⇒adj 〈e, ρ, END, nil, (C1, T1) :: C2〉eval

〈Fx .e, ρ, C1, T1, C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, END, nil, C2〉eval

〈END, v, T1, C2〉cont1 ⇒adj 〈T1, v, C2〉trail1
〈ARG ((e, ρ), C1), v, T1, C2〉cont1 ⇒adj 〈e, ρ, FUN (v, C1), T1, C2〉eval

〈FUN ([x , e, ρ], C1), v, T1, C2〉cont1 ⇒adj 〈e, ρ{x 7→ v}, C1, T1, C2〉eval

〈FUN ([C ′1, T
′
1], C1), v, T1, C2〉cont1 ⇒adj 〈C ′1, v, T ′1 @ (C1 :: T1), C2〉cont1

〈nil, v, C2〉trail1 ⇒adj 〈C2, v〉cont2
〈C1 :: T1, v, C2〉trail1 ⇒adj 〈C1, v, T1, C2〉cont1
〈(C1, T1) :: C2, v〉cont2 ⇒adj 〈C1, v, T1, C2〉cont1

〈nil, v〉cont2 ⇒adj v

Fig. 2. The adjusted call-by-value abstract machine
for the λ-calculus extended with F and #

4. EQUIVALENCE OF THE DEFINITIONAL MACHINE AND OF THE ADJUSTED MACHINE

We relate the configurations and transitions of the definitional abstract machine to those
of the adjusted abstract machine. As a diacritical convention [Milne and Strachey 1976], in
this section, we annotate the components, configurations, and transitions of the definitional
machine with a tilde ( ·̃ ). In order to relate a dynamic context of the adjusted machine (a
context and a trail of contexts) to a context of the definitional machine, we convert it into
a context of the definitional machine:

Definition 4.1. We define an operation ?̂, concatenating a context and a trail of contexts,
by induction on its second argument:

C1 ?̂ nil
def
= C1

C1 ?̂ (C ′1 :: T1)
def
= C1 ? (C ′1 ?̂ T1)

Proposition 2. C1 ?̂ (C ′1 :: T1) = (C1 ? C
′
1) ?̂ T1,
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Proof. Follows from Definition 4.1 and from the associativity of ? (Proposi-
tion 1(2)).

Proposition 3. (C1 ?̂ T1) ?̂ T ′1 = C1 ?̂ (T1 @T ′1).

Proof. By induction on the structure of T1.

Definition 4.2. We relate the definitional abstract machine and the adjusted abstract
machine with the following family of relations ':

— Terms: ẽ 'e e if ẽ = e
— Values: (a) [x̃ , ẽ, ρ̃] 'v [x , e, ρ] if x̃ = x , ẽ 'e e and ρ̃ 'env ρ

(b) C̃1 'v [C1, T1] if C̃1 'c C1 ?̂ T1
— Environments: ρ̃ 'env ρ if dom (ρ̃) = dom (ρ) and for all x ∈ dom (ρ̃), ρ̃(x ) 'v ρ(x )

— Contexts: (a) ẼND 'c END

(b) ÃRG ((ẽ, ρ̃), C̃1) 'c ARG ((e, ρ), C1) if ẽ 'e e, ρ̃ 'env ρ, and C̃1 'c C1

(c) F̃UN (ṽ, C̃1) 'c FUN (v, C1) if ṽ 'v v and C̃1 'c C1

— Meta-contexts: (a) ñil 'mc nil

(b) C̃1 :: C̃2 'mc (C1, T1) :: C2 if C̃1 'c C1 ?̂ T1 and C̃2 'mc C2

— Configurations: (a) 〈ẽ, ρ̃, C̃1, C̃2〉ẽval ' 〈e, ρ, C1, T1, C2〉eval if

ẽ 'e e, ρ̃ 'env ρ, C̃1 'c C1 ?̂ T1, and C̃2 'mc C2

(b) 〈C̃1, ṽ, C̃2〉c̃ont1 ' 〈C1, v, T1, C2〉cont1 if

C̃1 'c C1 ?̂ T1, ṽ 'v v, and C̃2 'mc C2

(c) 〈C̃2, ṽ〉c̃ont2 ' 〈C2, v〉cont2 if

C̃2 'mc C2 and ṽ 'v v

By writing δ ⇒∗ δ′ and δ ⇒+ δ′, we mean that there is respectively zero or more and
one or more transitions leading from the configuration δ to the configuration δ′.

Definition 4.3. The partial evaluation functions evaldef and evaladj mapping terms to
values are defined as follows:

(1) evaldef (ẽ) = ṽ if and only if 〈ẽ, ρ̃mt , ẼND, ñil〉
ẽval
⇒+

def 〈ñil, ṽ〉
c̃ont2

;
(2) evaladj (e) = v if and only if 〈e, ρmt , END, nil, nil〉eval ⇒+

adj 〈nil, v〉cont2 .

We want to prove that evaldef and evaladj are defined on the same programs (i.e., closed
terms), and that for any given program, they yield equivalent values.

Theorem 4.4 (Equivalence). For any programs ẽ and e such that ẽ 'e e (i.e., ẽ = e),
evaldef (ẽ) = ṽ for some value ṽ if and only if evaladj (e) = v for some value v such that
ṽ 'v v.

Proving Theorem 4.4 requires proving the following lemmas.

Lemma 4.5. If C̃1 'c C1 and C̃ ′1 'c C
′
1 then C̃1 ?̃ C̃ ′1 'c C1 ? C

′
1.

Proof. By induction on the structure of C̃1.

The following lemma addresses the configurations of the adjusted abstract machine that
break the one-to-one correspondence with the definitional abstract machine.
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Lemma 4.6. If δ = 〈END, v, T1, C2〉cont1 then

(1 ) if T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: nil, where n ≥ 0, then δ ⇒+
adj 〈C2, v〉cont2 ;

(2 ) if T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: C1 :: T ′1, where n ≥ 0 and C1 6= END,

then δ ⇒+
adj 〈C1, v, T

′
1, C2〉cont1 .

Proof. By induction on n.

The following key lemma relates single transitions of the two abstract machines.

Lemma 4.7. If δ̃ ' δ then

(1 ) if δ̃ ⇒def δ̃′ then there exists a configuration δ′ such that δ ⇒+
adj δ

′ and δ̃′ ' δ′;

(2 ) if δ ⇒adj δ
′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒def δ̃′,

δ′ ⇒∗adj δ′′ and δ̃′ ' δ′′.

Proof. By case analysis of δ̃ ' δ. Most of the cases follow directly from the definition
of the relation '. We show the proof of one such case:

Case: δ̃ = 〈x̃ , ρ̃, C̃1, C̃2〉ẽval and δ = 〈x , ρ, C1, T1, C2〉eval
From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where

δ̃′ = 〈C̃1, ρ̃(x̃ ), C̃2〉c̃ont1 .

From the definition of the adjusted abstract machine, δ ⇒adj δ
′, where

δ′ = 〈C1, ρ(x ), T1, C2〉cont1 .

By assumption, ρ̃(x̃ ) 'v ρ(x ), C̃1 'c C1 ?̂ T1 and C̃2 'mc C2.

Hence, δ̃′ ' δ′ and both directions of Lemma 4.7 are proved in this case.
There are three more interesting cases. One of them arises when a captured continuation

is applied, and the remaining two explain why the two abstract machines do not operate in
lockstep:

Case: δ̃ = 〈F̃UN (C̃ ′1, C̃1), ṽ, C̃2〉c̃ont1 and δ = 〈FUN ([C ′1, T
′
1], C1), v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where

δ̃′ = 〈C̃ ′1 ?̃ C̃1, ṽ, C̃2〉c̃ont1 .

From the definition of the adjusted abstract machine, δ ⇒adj δ
′, where

δ′ = 〈C ′1, v, T ′1 @ (C1 :: T1), C2〉cont1 .

By assumption, C̃ ′1 'c C
′
1 ?̂ T

′
1 and C̃1 'c C1 ?̂ T1.

By Lemma 4.5, we have C̃ ′1 ?̃ C̃1 'c (C ′1 ?̂ T
′
1) ? (C1 ?̂ T1).

By the definition of ?̂, (C ′1 ?̂ T
′
1) ? (C1 ?̂ T1) = (C ′1 ?̂ T

′
1) ?̂ (C1 :: T1).

By Proposition 3, (C ′1 ?̂ T
′
1) ?̂ (C1 :: T1) = C ′1 ?̂ (T ′1 @ (C1 :: T1)).

Since ṽ 'v v and C̃2 'mc C2, we infer that δ̃′ ' δ′ and both directions of Lemma 4.7 are
proved in this case.

Case: δ̃ = 〈ẼND, ṽ, C̃2〉c̃ont1 and δ = 〈END, v, T1, C2〉cont1
From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where δ̃′ = 〈C̃2, ṽ〉c̃ont2 .

By the definition of ', ṽ 'v v, C̃2 'mc C2, and ẼND 'c END ?̂ T1.
Hence, it follows from the definition of 'c that END ?̂ T1 = END, which is possible only
when T1 = END :: . . . :: END︸ ︷︷ ︸

n

:: nil for some n ≥ 0.
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Then by Lemma 4.6(1), δ ⇒+
adj δ

′, where δ′ = 〈C2, v〉cont2 and δ̃′ ' δ′, and both directions
of the lemma are proved in this case.

Case: δ̃ = 〈C̃1, ṽ, C̃2〉c̃ont1 and δ = 〈END, v, T1, C2〉cont1 , where C̃1 6= ẼND

By the definition of ', ṽ 'v v, C̃2 'mc C2, and C̃1 'c END ?̂ T1.
Hence, it follows from the definition of 'c that END ?̂ T1 6= END, which is possible only
when T1 = END :: . . . :: END︸ ︷︷ ︸

n

:: C1 :: T ′1 for some n ≥ 0 and C1 6= END.

Then by Lemma 4.6(2), δ ⇒+
adj δ′, where δ′ = 〈C1, v, T

′
1, C2〉cont1 , C1 6= END, and since

END ?̂ T1 = C1 ?̂ T
′
1, we have δ̃ ' δ′. By one of the trivial cases for δ̃ ' δ′ (not shown in the

proof), both directions of the lemma are proved in this case.

Given the relation between single-step transitions of the two abstract machines, it is
straightforward to generalize it to the relation between their multi-step transitions.

Lemma 4.8. If δ̃ ' δ then

(1 ) if δ̃ ⇒+
def δ̃′ then there exists a configuration δ′ such that δ ⇒+

adj δ
′ and δ̃′ ' δ′;

(2 ) if δ ⇒+
adj δ

′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒+
def δ̃′,

δ′ ⇒∗adj δ′′ and δ̃′ ' δ′′.

Proof. Both directions follow from Lemma 4.7 by induction on the number of transi-
tions.

We are now in position to prove the equivalence theorem.

Proof of Theorem 4.4. The initial configuration of the definitional abstract machine,

i.e., 〈ẽ, ρ̃mt , ẼND, ñil〉
ẽval

, and the initial configuration of the adjusted abstract machine,
i.e., 〈e, ρmt , END, nil, nil〉eval , are in the relation ' when ẽ = e. Therefore, if the definitional

abstract machine reaches the final configuration 〈ñil, ṽ〉
c̃ont2

, then by Lemma 4.8(1), there

is a configuration δ′ such that δ ⇒+
adj δ′ and δ̃′ ' δ′. By the definition of ', δ′ must be

〈nil, v〉cont2 , with ṽ 'v v. The proof of the converse direction follows similar steps.

5. THE EVALUATOR CORRESPONDING TO THE ADJUSTED MACHINE

The raison d’être of the adjusted abstract machine is that it is in defunctionalized form
with respect to its contexts and meta-contexts. Refunctionalizing its contexts and meta-
contexts yields the higher-order evaluator of Figure 3. This evaluator is compositional, i.e.,
the recursive calls on each right-hand side are over a proper sub-term of the correspond-
ing left-hand side. The evaluator is expressed in a continuation+state-passing style where
the state consists of a trail of continuations and a meta-continuation. Defunctionalizing it
gives the abstract machine of Figure 2. Since this continuation+state-passing style came
into being to account for dynamic delimited continuations, we refer to it as a ‘dynamic
continuation-passing style’ (dynamic CPS).

6. THE CPS TRANSFORMER CORRESPONDING TO THE EVALUATOR IN DYNAMIC CPS

The dynamic CPS transformer corresponding to the evaluator of Figure 3 can be imme-
diately obtained as the associated syntax-directed encoding into the term model of the
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meta-language (using fresh variables):

JxK = λ(k1, t1, k2).k1 (x , t1, k2)
Jλx .eK = λ(k1, t1, k2).k1 (λ(x , k1, t1, k2). JeK (k1, t1, k2), t1, k2)

Je0 e1K = λ(k1, t1, k2).Je0K (λ(v0, t1, k2). Je1K (λ(v1, t1, k2). v0 (v1, k1, t1, k2), t1, k2), t1, k2)

J#eK = λ(k1, t1, k2).JeK (θ1, nil, λv. k1 (v, t1, k2))

JFx .eK = λ(k1, t1, k2).let x = λ(v, k′1, t
′
1, k2). k1 (v, t1 @ (k′1 :: t′1), k2)

in JeK (θ1, nil, k2)

A transformed term is evaluated by supplying an initial continuation, trail, and meta-
continuation as follows: JeK (θ1, nil, θ2), where θ1 and θ2 are defined in Figure 3. As usual,
this initialization is equivalent to delimiting control in the translated term.

It is straightforward to write a one-pass version of the dynamic CPS transformer [Danvy
and Filinski 1992].

An example. In our earlier work [Biernacki et al. 2006, Section 2.5], we presented a sim-
ple example where using control and prompt led to one result and using shift and reset
led to another. We displayed the CPS counterpart of the latter and stated that no such
simple functional encoding existed for the former. Dynamic CPS, however, provides such a
functional encoding. The example reads as follows:

fun test ()
= prompt (fn () => control (fn k => 10 + (k 100)) + control (fn k’ => 1))

Applying test to () yields 1 since the second occurrence of control wipes out the entire
evaluation context. Its shift and reset counterpart yields 11 since the second occurrence of
shift only wipes out the evaluation context up to the application of k to 100.

The dynamic CPS transformation yields the following program, using the syntax of SML:

type o = int

datatype ’a cont1 = CONT1 of ’a * trail1 * cont2 -> o
withtype trail1 = o cont1 list and cont2 = o -> o

(* theta1 : o * trail1 * cont2 -> o *)
fun theta1 (v, nil : trail1, k2 : cont2)

= k2 v
| theta1 (v, (CONT1 k1) :: t1, k2)
= k1 (v, t1, k2)

val theta2 : cont2 = fn v => v

fun test_dcps () (k1, t1, k2)
= let fun k (v, k1’, t1’, k2)

= let fun k’ (v’, k1’’, t1’’, k2)
= k1 (v + v’, t1’ @ (k1’’ :: t1’’), k2)

in theta1 (1, nil, k2)
end

in k (100, CONT1 (fn (v, t1, k2) => theta1 (10 + v, t1, k2)), nil, k2)
end

Unfolding the two let expressions and inlining theta1 yield the following simpler definition:

fun test_dcps () (k1, t1, k2)
= k2 1

The initial call is test dcps () (theta1, nil, theta2). In our experience, out-of-the-box
dynamic CPS programs are rarely enlightening the way normal CPS programs (at least after
some practice) tend to be. However, again in our experience, a combination of simplifications
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Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e
Values: v ∈ Val = Val → Val
Environments: ρ – partial functions mapping variables to values
Evaluation function: eval : Exp × Env → Ans

evalds (x , ρ) = ρ(x )
evalds (λx .e, ρ) = λv. evalds (e, ρ{x 7→ v})
evalds (e0 e1, ρ) = evalds (e0, ρ) (evalds (e1, ρ))

evalds (#e, ρ) = #(evalds (e, ρ))

evalds (Fx .e, ρ) = Fv.evalds (e, ρ{x 7→ v})

Main function: evaluateds : Exp → Val
evaluateds (e) = evalds (e, ρmt)

Fig. 4. A direct-style evaluator for the λ-calculus extended with F and #

(e.g., inlining theta1 in the example just above) and defunctionalization often clarifies the
intent and the behavior of the original direct-style program. We illustrate this point in
Section 8.

7. THE CORRESPONDING DIRECT-STYLE EVALUATOR

Figure 4 shows a direct-style evaluator for the λ-calculus extended with F and # written
in a meta-language enriched with F and #.

The following coherence property holds. Transforming this direct-style evaluator into
dynamic continuation-passing style, using the one-pass version of the dynamic CPS trans-
former of Section 6, yields the evaluator of Figure 3. Earlier on [1990, Section 2], Danvy
and Filinski have shown that a similar coherence property holds for static delimited con-
tinuations: CPS-transforming a direct-style evaluator for the λ-calculus extended with shift
and reset written in a meta-language extended with shift and reset yields the definitional
interpreter for the λ-calculus extended with shift and reset. (In the same spirit, Danvy and
Lawall have transformed into direct style a continuation-passing evaluator for the λ-calculus
extended with call/cc, obtaining a traditional direct-style evaluator interpreting call/cc with
call/cc [1992, Section 1.2.1].)

8. STATIC AND DYNAMIC CONTINUATION-PASSING STYLE

To contrast the effects of shift and of control [2005, Section 4.6], Biernacka, Biernacki, and
Danvy presented the following simple example. We write it below in Standard ML, using
Filinski’s implementation of shift and reset [1994] shown in Appendix C, and using the
implementation of control and prompt presented in Section 10. In both cases, the type of
the intermediate answers is int list:

(* foo : int list -> int list *) (* bar : int list -> int list *)
fun foo xs fun bar xs

= let fun visit nil = let fun visit nil
= nil = nil

| visit (x :: xs) | visit (x :: xs)
= visit = visit

(shift (control
(fn k => x :: (k xs))) (fn k => x :: (k xs)))

in reset (fn () => visit xs) in prompt (fn () => visit xs)
end end
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The two functions traverse their input list recursively, and construct an output list. They
only differ in that to abstract the recursive call to visit into a delimited continuation, foo
uses shift and reset whereas bar uses control and prompt. This seemingly minor difference has
a major effect since it makes foo behave as a list-copying function and bar as a list-reversing
function.

To illustrate this difference of behavior, Biernacka, Biernacki, and Danvy have used con-
texts and meta-contexts [2005, Section 4.6], and Biernacki and Danvy have used an intuitive
source representation of the successive contexts [2006, Section 2.3]: given the list [1,2,3],
the captured delimited continuation in foo is always fn v => visit v, whereas for bar, it is
successively fn v => visit v, fn v => 1 :: (visit v), fn v => 2 :: 1 :: (visit v), and
fn v => 3 :: 2 :: 1 :: (visit v), making it clear that foo copies its argument whereas
bar reverses it. In this section, we use static and dynamic continuation-passing style to
illustrate the difference of behavior.

8.1. Static continuation-passing style

Applying the canonical CPS transformation for shift and reset [Danvy and Filinski 1990] to
the definition of foo yields the following purely functional program:

fun foo_scps xs
= let fun visit (nil, k1, k2)

= k1 (nil, k2)
| visit (x :: xs, k1, k2)
= let fun k (v, k1’, k2’)

= visit (v, k1, fn v => k1’ (v, k2’))
in k (xs, fn (v, k2) => k2 (x :: v), k2)
end

in visit (xs, fn (v, k2) => k2 v, fn v => v)
end

Inlining k and k1’ and lambda-dropping k1 [Danvy and Schultz 2000] and then inlining it
yields the following simpler program:

fun foo_scps_simplified xs
= let fun visit (nil, k2)

= k2 nil
| visit (x :: xs, k2)
= visit (xs, fn v => k2 (x :: v))

in visit (xs, fn v => v)
end

This simpler program is list copy in CPS.

8.2. Dynamic continuation-passing style

Applying the dynamic CPS transformation for control and prompt (Section 6) to the defi-
nition of bar yields the following purely functional program:

type o = int list

datatype ’a cont1 = CONT1 of ’a * trail1 * cont2 -> o
withtype trail1 = o cont1 list and cont2 = o -> o

(* theta1 : o * trail1 * cont2 -> o *)
fun theta1 (v, nil : trail1, k2 : cont2)

= k2 v
| theta1 (v, (CONT1 k1) :: t1, k2)
= k1 (v, t1, k2)

val theta2 : cont2 = fn v => v
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fun bar_dcps xs
= let fun visit (nil, k1, t1, k2)

= k1 (nil, t1, k2)
| visit (x :: xs, k1, t1, k2)
= let fun k (v, k1’, t1’, k2)

= visit (v, k1, t1 @ (k1’ :: t1’), k2)
in k (xs, CONT1 (fn (v, t1, k2) => theta1 (x :: v, t1, k2)),

nil, k2)
end

in visit (xs, theta1, nil, theta2)
end

Inlining k, lambda-dropping k1 and k2 and then inlining them, defunctionalizing the contin-
uation into the ML option type, and using an auxiliary function continue aux to interpret
the trail, yields the following first-order program:

fun bar_dcps_defunct xs
= let fun visit (nil, t1)

= continue (NONE, nil, t1)
| visit (x :: xs, t1)
= visit (xs, t1 @ ((SOME x) :: nil))

and continue (NONE, v, t1)
= continue_aux (t1, v)

| continue (SOME x, v, t1)
= continue (NONE, x :: v, t1)

and continue_aux (nil, v)
= v

| continue_aux (k1 :: t1, v)
= continue (k1, v, t1)

in visit (xs, nil)
end

Further simplifications (essentially inlining the calls to continue) lead one to the following
program:

fun bar_dcps_defunct_simplified xs
= let fun visit (nil, t1)

= continue_aux (t1, nil)
| visit (x :: xs, t1)
= visit (xs, t1 @ (x :: nil))

and continue_aux (nil, v)
= v

| continue_aux (k1 :: t1, v)
= continue_aux (t1, k1 :: v)

in visit (xs, nil)
end

These successive equivalent views make it increasingly clearer that the program reverses its
input list by first copying it to the trail through a series of concatenations (with visit),
and then by reversing the trail (with continue aux).

8.3. A generalization

Let us briefly generalize the programming pattern above from lists to binary trees:

datatype tree = EMPTY
| NODE of tree * int * tree

In the following two definitions, the type of the intermediate answers is int list:
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— Here, the two recursive calls to visit are abstracted into a static delimited continuation
using shift and reset:

fun traverse_sr t
= let fun visit (EMPTY, a)

= a
| visit (NODE (t1, i, t2), a)
= visit (t1, visit (t2, shift (fn k => i :: (k a))))

in reset (fn () => visit (t, nil))
end

— Here, the two recursive calls to visit are abstracted into a dynamic delimited continua-
tion using control and prompt:

fun traverse_cp t
= let fun visit (EMPTY, a)

= a
| visit (NODE (t1, i, t2), a)
= visit (t1, visit (t2, control (fn k => i :: (k a))))

in prompt (fn () => visit (t, nil))
end

The static delimited continuations yield a preorder and right-to-left traversal, whereas the
dynamic delimited continuation yield a postorder and left-to-right traversal. The resulting
two lists are reverse of each other.

Again, CPS transformation and defunctionalization yield first-order programs whose be-
havior is more patent.

8.4. Further examples

We now turn to the lazy depth-first and breadth-first traversals presented by Biernacki,
Danvy, and Shan [2006]. To support laziness, they used the following signature of generators:

signature GENERATOR
= sig

type ’a computation
datatype sequence = END

| NEXT of int * sequence computation

val make_sequence : tree -> sequence
val compute : sequence computation -> sequence

end

The following generator is parameterized by a scheduler that is given four commands (i.e.,
unit-yieldings thunks) to be applied in turn. The functor make Control and Prompt is defined
in Section 10.

signature SCHEDULER
= sig

type command = unit -> unit
val schedule : command * command * command * command -> unit

end

functor make_Lazy_Generator (S : SCHEDULER) : GENERATOR
= struct

datatype sequence = END
| NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

structure CP = make_Control_and_Prompt (type answer = sequence)
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(* visit : tree -> unit *)
fun visit EMPTY

= ()
| visit (NODE (t1, i, t2))
= CP.control

(fn k =>
let val () = S.schedule

(fn () => visit t1,
fn () => CP.control (fn k’ => NEXT (i, k’)),
fn () => visit t2,
fn () => let val _ = k () in () end)

in END
end)

(* make_sequence : tree -> sequence *)
fun make_sequence t

= CP.prompt (fn () => let val () = visit t
in END
end)

(* compute : sequence computation -> sequence *)
fun compute k

= CP.prompt (fn () => k ())
end

The relative scheduling of the first and third commands determines whether the traversal
of the input tree is from left to right or from right to left. The relative scheduling of the
second command with respect to the first and the third determines whether the traversal is
preorder, inorder, or postorder. The relative scheduling of the fourth command determines
whether the traversal is depth-first, breadth-first, or a mix of both.

In each case, dynamic CPS transformation and defunctionalization yield first-order pro-
grams whose behavior is patent in that the depth-first traversal uses a stack, the breadth-first
traversal uses a queue, and the mixed traversal uses a queue to hold the right (respectively
the left) subtrees while visiting the left (respectively the right) ones.

9. A MONAD FOR DYNAMIC CONTINUATION-PASSING STYLE

The evaluator of Figure 3 is compositional, and has the following type:

Exp × Env × Cont1 × Trail1 × Cont2 → Val

Let us curry and map the evaluator to direct style with respect to the meta-
continuation [Danvy 1994]. The type signature of the resulting evaluator eval′dcps is as follows:

Exp × Env → Cont1 → Trail1 → Val

where

Cont1 = Val → Trail1 → Val

Val = Val → Cont1 → Trail1 → Val

Trail1 = List(Cont1)

In all clauses of the evaluator but the one defining prompt, the direct-style transformation
consists of eliminating the meta-continuation, whereas the new clause defining prompt is
transformed into continuation-composing style [Danvy and Filinski 1990]:

eval′dcps (#e, ρ) k1 t1 = k1 (eval′dcps (e, ρ) θ nil) t1
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The initial continuation also is transformed:

θ1 = λv. λt1. case t1
of nil⇒ v
| k′1 :: t′1 ⇒ k′1 v t

′
1

The new evaluator operates on values only of one type Val, so in order to exhibit the notion
of computation induced by dynamic CPS, we abstract both the argument type (α) and the
final answer type (o) of continuations and we introduce the following type constructor [Moggi
1991; Wadler 1992]:

D(α) = Cont1(α) → Trail1 → o

where Cont1(α) = α → Trail1 → o and Trail1 = List(Cont1(o)). We observe that for a
fixed type o, D can be expressed as

D(α) = (α → Ans) → Ans

where Ans = List(o → Ans) → o. Therefore, the notion of computation induced by
dynamic CPS takes the form of the continuation monad with the recursive answer type Ans
(which confirms Shan’s point that a static simulation of dynamic continuations requires a
recursive answer type [2007]), the type constructor D, and the usual continuation monad
operations unit and bind:

unit : α → D(α)
unit v = λk1. k1 v

bind : D(α) → (α → D(β)) → D(β)
bind c f = λk1. c (λv. f v k1)

Having identified the monad for dynamic continuation-passing style, we are now in posi-
tion to define control and prompt as operations in this monad:

Definition 9.1. We define the monad operations control, prompt and run as follows:

control : ((α → D(o)) → D(o)) → D(α)
control f = λk1. λt1. let x = λv. λk′1. λt

′
1. k1 v (t1 @ (k′1 :: t′1))

in f x θ1 nil

prompt : D(o) → D(o)
prompt c = λk1. k1 (c θ1 nil)

run : D(o) → o
run c = c θ1 nil

We can now extend the usual call-by-value monadic evaluator for the λ-calculus to F and
# by taking α = o = Val (see Figure 5). Inlining the abstraction layer provided by the monad
yields an evaluator [Danvy et al. 1991], and η-expanding, uncurrying and CPS-transforming
this evaluator yields the evaluator of Figure 3. Dynamic continuation-passing style therefore
fits the functional correspondence between evaluators and abstract machines advocated by
the authors [Ager et al. 2003; Biernacki 2005; Danvy 2006; Millikin 2007]. Furthermore,
and as has been observed before for other CPS transformations and for the continuation
monad [Hatcliff and Danvy 1994; Wadler 1992], the dynamic CPS transformation itself can
be factored through Moggi’s monadic metalanguage and the monad above.

The monad presented in this section determines a simple type system that accounts for
dynamic delimited-control operators, where, for a fixed type o, control and prompt have the
following type signatures:

control : ((α → o) → o) → α prompt : o → o
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Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e
Values: v ∈ Val = Val → D(Val)
Environments: ρ – partial functions mapping variables to values
Evaluation function: eval : Exp × Env → D(Val)

evalmon (x , ρ) = unit (ρ(x ))
evalmon (λx .e, ρ) = unit (λv. evalmon (e, ρ{x 7→ v}))
evalmon (e0 e1, ρ) = bind (evalmon (e0, ρ)) (λv0. bind (evalmon (e1, ρ)) (λv1. v0 v1)))

evalmon (#e, ρ) = prompt (evalmon (e, ρ))

evalmon (Fx .e, ρ) = control (λv. evalmon (e, ρ{x 7→ v}))
Main function: evaluatemon : Exp → Val

evaluatemon (e) = run (evalmon (e, ρmt))

Fig. 5. A monadic evaluator for the λ-calculus extended with F and #

This type system is expressive enough to type most of the existing programming examples
and it makes it possible to implement control and prompt in ML (see Section 10). It re-
quires, however, that the answer type of each delimited continuation be the same as the
final answer type of the entire program, which is a restriction. In order to obtain more lib-
eral and expressive type systems for dynamic continuations, we could follow Wadler [1994]
and parameterize the monad by intermediate answer types. Allowing for one additional
type parameter would yield a type-and-effect system à la Murthy [1992], whereas allowing
for two additional type parameters would yield a type-and-effect system à la Danvy and
Filinski [1989].

10. A NEW IMPLEMENTATION OF CONTROL AND PROMPT

The operations control and prompt in the continuation monad can be implemented in direct
style in terms of shift and reset. In direct style, we use the monadic reflection operators reify
and reflect to convert between implicit and explicit representations of computations [Filinski
1994]. They have types:

reify : (unit → τ) → D(τ) reflect : D(τ) → τ

The reify operator takes a computation (represented as a thunk in call by value) that may
have implicit effects and coerces it into an effect-free value that represents these implicit
effects. The reflect operator takes an effect-free value and coerces it into a computation,
performing the implicit effects represented by the reified value, if there are any.

We insert reify and reflect in the definitions of control, prompt and run from Section 9
guided by the types: we reify a computation that possibly has control effects in order to
explicitly apply it to a continuation, and we reflect pure functional values that expect a
continuation. Since our implementation language is call by value, we require the argument
to prompt and run (a computation which may have control effects) to be a thunk:

control : ((α → o) → o) → α
control f = reflectλk1. λt1. let x = λv. reflectλk′1. λt

′
1. k1 v (t1 @ (k′1 :: t′1))

in reify (λ(). f x) θ1 nil

prompt : (unit → o) → o
prompt c = reflectλk1. k1 (reify c θ1 nil)

run : (unit → o) → o
run c = reify c θ1 nil
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Since control and prompt are operations in the continuation monad, we use the definitions
of reify and reflect for the continuation monad [Filinski 1996]:3

reify c = λk. resetλ(). k (c ()) reflect f = shift f

We obtain definitions of control, prompt and run in terms of shift and reset by inlining the
occurrences of reify and reflect and simplifying:

control f = {definition of control}
reflectλk1. λt1. let x = λv. reflectλk′1. λt

′
1. k1 v (t1 @ (k′1 :: t′1))

in reify (λ(). f x) θ1 nil
= {definition of reify and reflect}

shiftλk1. λt1. let x = λv. shiftλk′1. λt
′
1. k1 v (t1 @ (k′1 :: t′1))

in (λk. resetλ(). k ((λ(). f x) ())) θ1 nil
{βv-reduction}

= shiftλk1. λt1. let x = λv. shiftλk′1. λt
′
1. k1 v (t1 @ (k′1 :: t′1))

in (λk1. resetλ(). k1 (f x)) θ1 nil
{βv-reduction}

= {two βv-reductions}
shiftλk1. λt1. let x = λv. shiftλk′1. λt

′
1. k1 v (t1 @ (k′1 :: t′1))

in reset (λ(). θ1 (f x)) nil

prompt c = {definition of prompt}
reflectλk1. k1 (reify c θ1 nil)

= {definition of reify and reflect}
shiftλk1. k1 ((λk. resetλ(). k (c ())) θ1 nil)

= {βv-reduction}
shiftλk1. k1 (reset (λ(). θ1 (c ())) nil)

= {S-elim: Sk.kM = M , if k /∈ FV (M) [Kameyama and Hasegawa 2003]}
reset (λ(). θ1 (c ())) nil

run c = {definition of run}
reify c θ1 nil

= {definition of reify}
(λk. resetλ(). k (c ())) θ1 nil

= {βv-reduction}
reset (λ(). θ1 (c ())) nil

= {definition of prompt in terms of shift and reset}
prompt c

which manifests that programs are run within a control delimiter at the top level.
Translating these definitions into an implementation in Standard ML is straightforward:

signature CONTROL_AND_PROMPT
= sig

type answer
val control : ((’a -> answer) -> answer) -> ’a
val prompt : (unit -> answer) -> answer
val run : (unit -> answer) -> answer

end

3The definitions given here for reify and reflect are simplifications of the ones given in Filinski’s disserta-
tion [1996, page 82]. They are obtained by erasing the level tags and then simplifying according to standard
call-by-value reasoning.
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functor make_Control_and_Prompt (type answer) : CONTROL_AND_PROMPT
= struct

type answer = answer

datatype ans = ANS of trail1 -> answer
withtype ’a cont1 = ’a -> ans and trail1 = answer cont1 list

exception MISSING_PROMPT

structure SR = make_Shift_and_Reset (type answer = ans)

fun continue (ANS f) t1 (* continue : ans -> trail1 -> answer *)
= f t1

fun theta1 v (* theta1 : answer cont1 *)
= ANS (fn nil => v

| (k1 :: t1) => continue (k1 v) t1)

fun control f (* control : ((’a -> answer) -> answer) -> ’a *)
= SR.shift

(fn k1 => ANS (fn t1 =>
let val x = fn v =>

SR.shift
(fn k1’ => ANS (fn t1’ =>

continue (k1 v) (t1 @ (k1’ :: t1’))))
in continue (SR.reset (fn () => theta1 (f x))) nil
end)) handle MISSING_RESET => raise MISSING_PROMPT

fun prompt c (* prompt : (unit -> answer) -> answer *)
= continue (SR.reset (fn () => theta1 (c ()))) []

fun run c (* run : (unit -> answer) -> answer *)
= prompt c

end

This implementation is a direct consequence of the abstract-machine semantics of con-
trol and prompt. It is formally connected to the operations in the continuation monad by
monadic reflection and the monad is formally connected to the abstract machine by defunc-
tionalization.

As usual with implementations of delimited control operators, a program using control
and prompt needs a toplevel control delimiter, and the function run provides it: to run a
complete (and possibly effectful) program c, we evaluate the expression run c.

11. RELATED WORK

The concept of meta-continuation and its representation as a function originate in Wand
and Friedman’s formalization of reflective towers [1988], and its representation as a list
in Danvy and Malmkjær’s followup study [1988]. Danvy and Filinski then realized that
a meta-continuation naturally arises by “one more” CPS transformation, giving rise to
success and failure continuations [1990], and later Danvy and Nielsen observed that the list
representation naturally arises by defunctionalization [2001].

As for delimited continuations, the representation of the meta-continuation as a list has
a long history. Johnson and Duggan use it in their early work on composable continua-
tions [1988]. Danvy and Filinski use it to specify (what is now known as) shift0 [1989,
Appendix C]. Moreau and Queinnec later used it to specify their control operators call/pc
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and marker [1994]. Dybvig, Peyton Jones, and Sabry have used it in their monadic framework
for delimited continuations [2007].

The original approaches to delimited continuations were split between composing contin-
uations dynamically by concatenating their representations [Felleisen et al. 1988] and com-
posing them statically using continuation-passing function composition [Danvy and Filinski
1990]. Shan [2007], Dybvig, Peyton Jones, and Sabry [2007], and Kiselyov [2005] have each
proposed accounts of dynamic delimited continuations:

— Shan gives a continuation semantics for dynamic delimited continuations. His continuation
semantics threads a state equivalent to our trail. This state is a functional representation
of a binary tree with continuations at the leaves. He extends Felleisen et al.’s idea of an
algebra of contexts [1988] and uses the algebraic operators Send and Compose rather
than standard list operators to propagate intermediate results and compose delimited
continuations.
The abstract machine corresponding to Shan’s continuation semantics is similar to our
adjusted abstract machine. Like ours, it uses an extra component to delay the concate-
nation of contexts. Shan’s approach corresponds to viewing the composition operator (?)
as a context constructor rather than a meta-level operation, thus obtaining a machine in
defunctionalized form. He justifies the correctness of his continuation semantics by (1)
using defunctionalization to obtain the corresponding abstract machine, and (2) relating
it to the definitional machine for control and prompt given here in Section 2.
Shan informally connects his continuation semantics to his direct-style implementation in
Scheme via a pair of transformations. He transforms an abstraction over a continuation
into a use of shift and transforms an application to a continuation into an application of
a continuation guarded by a reset. Here we show that these transformations are formally
justified by the monadic reflection operators reflect and reify for the continuation monad.
Shan considers two other dynamic delimited continuation operators. He gives them con-
tinuation semantics and implementations that correspond to two other abstract machines.
Our adjusted abstract machine and the corresponding dynamic continuation-passing style
can be adapted to account for either of these variations as well, by leaving the meta-
continuation defunctionalized (see Appendices A and B).

— Dybvig, Peyton Jones, and Sabry provide a general framework for delimited continua-
tions. They give a continuation semantics that threads a state that is a list of continu-
ations annotated with multiple control delimiters. This state is related to our trail and
meta-continuation. Defunctionalizing our meta-continuation, inserting explicit delimiters
between its segments, flattening it, and appending it to our trail of continuations yields
their state specialized to a single delimiter. Their framework, however, was designed in-
dependently of defunctionalization.
They exhibit an abstract machine that corresponds to their continuation semantics. Our
adjusted abstract machine is related to their machine specialized to a single delimiter and
restricted to control and prompt. We find this coincidence of result remarkable considering
the difference of motivation and methodology:
– Dybvig, Peyton Jones, and Sabry sought “a typed monadic framework in which one

can define and experiment with control operators that manipulate delimited continua-
tions” [2007, Section 8], based on Moreau and Queinnec’s representation of the meta-
continuation as a list of control-delimiter tags and of continuations [1994], and using
Gunter, Rémy, and Riecke’s control operators set and cupto [1995] as a common basis,
whereas

– we wanted an abstract machine for control and prompt that is in the range of Reynolds’s
defunctionalization in order to provide a consistent spectrum of tools for program-
ming with and reasoning about delimited continuations, both in direct style and in
continuation-passing style.
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Dybvig et al. give a direct-style Scheme implementation of their framework in terms of
call/cc and state, but do not formally justify the correctness of this implementation.
Their framework is more general than the present work: it can account for all the variations
on control operators considered by Shan, as well as variations with multiple delimiters.
In contrast, we have focused on specifying control and prompt and on illustrating them.

— Kiselyov gives an encoding of dynamic delimited continuations in terms of shift and reset
and recursion. His approach is qualitatively different from ours, Shan’s, and Dybvig et
al.’s. It does not thread an extra state parameter, but rather tags values sent to the meta-
continuation to indicate control effects or their absence. His transformation wraps code
around delimiters and the bodies of continuation functions to handle control effects.
The abstract machine corresponding to Kiselyov’s encoding does not have an extra com-
ponent to delay the concatenation of contexts. Instead, it holds continuations in the
meta-continuation to delay their concatenation to the current continuation.
Kiselyov proves his encoding correct by showing that its behavior under reduction agrees
with the reduction semantics of control and prompt.
His approach allows variations on delimited continuations by choosing how to handle
delimiters and continuation application.

As for adjusting an abstract machine to put it in defunctionalized form, there are prece-
dents. For example, as pointed out by the two last authors [2008], Felleisen’s version of
the SECD machine with the J operator [1987] differs from its predecessors in that it is in
defunctionalized form. (In effect, it uses a control delimiter.)

Finally, just as repeated CPS transformations give rise to a static CPS hierarchy [Bier-
nacka et al. 2005; Danvy and Filinski 1990; Kameyama 2004; Murthy 1992], repeated dy-
namic CPS transformations give rise to a dynamic CPS hierarchy—a future work.

Since this article was originally written, Kameyama and Yonezawa [2008] have typed our
dynamic CPS transformation, using Asai and Kameyama’s type system [2007]. They have
shown that whereas typed control/prompt can macro-express typed shift/reset, the converse
does not hold. Also, Materzok and Biernacki have used the notion of trail to design an
expressive type-and-effect system with effect subtyping and a selective type-directed CPS
transformation for the control operators shift0 and reset0 considered in Appendix B [2011;
2014], and Downen and Ariola have further studied dynamic delimited continuations in the
presence of multiple control delimiters [2012].

12. CONCLUSION AND ISSUES

In our earlier work [Biernacki et al. 2006], we argued that dynamic delimited continuations
need examples, reasoning tools, and meaning-preserving program transformations, not only
new variations, new formalizations, or new implementations. The present work fulfills these
wishes for control and prompt by providing, in a concerted way, an abstract machine that
is in defunctionalized form, the corresponding evaluator, the corresponding continuation-
passing style and CPS transformer, a monadic account of this continuation-passing style, a
new simulation of dynamic delimited-control operators in terms of static ones, and several
new examples, including a meta-circular evaluator.

Compared to static delimited continuations, and despite the implementation advances
mentioned in Section 11, the topic of dynamic delimited continuations still remains largely
unexplored. We believe that the spectrum of compatible computational artifacts presented
here—abstract machine, evaluator, computational monad, and dynamic continuation-
passing style—puts one in a better position to assess them [Ariola et al. 2012].

Acknowledgments. We are grateful to Mads Sig Ager, Ma lgorzata Biernacka, Julia Lawall,
Kristian Støvring, and the anonymous reviewers of TOPLAS for their comments. Thanks
are also due to Ron Cytron and Benjamin C. Pierce for editing the original version of this
article in 2006–2007 and to Jens Palsberg for taking the baton in 2014.
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Appendices
A. CONTROL0

Shan [2007] considers a variation of control, control0 (−F− in the parlance of Dybvig, Peyton
Jones, and Sabry [2007]). Informally, control0 is like control except that capturing a delim-
ited continuation removes a delimiter (and therefore programs using control0 may need
more than one toplevel control delimiter or alternatively a “master,” undiscardable control
delimiter). Our adjusted abstract machine can be modified to account for this variation by
replacing the clause for capturing a delimited continuation as follows:

〈−F−x .e, ρ, C1, T1, (C ′1, T
′
1) :: C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, C ′1, T ′1, C2〉eval

The machine is still in defunctionalized form with respect to its contexts. It can thus be
refunctionalized, which yields a compositional continuation-passing evaluator. The rest of
the development (CPS transformation, direct-style evaluator, monad, and implementation)
follows Sections 6, 7, 9, and 10 mutatis mutandis.4

B. SHIFT0

The fourth control operator considered by Shan is shift0 (−F+ in the parlance of Dybvig,
Peyton Jones, and Sabry [2007]). Informally, shift0 is like shift except that capturing a
delimited continuation removes a delimiter (and therefore programs using shift0 may need
more than one toplevel control delimiter). Our adjusted abstract machine can be modified
to account for this variation by replacing the clause for applying a captured continuation
as follows, in addition to the modification of Appendix A:

〈−F+x .e, ρ, C1, T1, (C ′1, T
′
1) :: C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, C ′1, T ′1, C2〉eval

〈FUN ([C ′1, T
′
1], C1), v, T1, C2〉cont1 ⇒adj 〈C ′1, v, T ′1, (C1, T1) :: C2〉cont1

The machine is still in defunctionalized form with respect to its contexts. It can thus be
refunctionalized, which yields a compositional continuation-passing evaluator. Just as in
Appendix A, the rest of the development follows Sections 6, 7, 9, and 10.

C. AN IMPLEMENTATION OF SHIFT AND RESET

We use Filinski’s implementation of shift and reset in Standard ML [1994], renaming some
identifiers for uniformity:

signature ESCAPE
= sig

type void
val coerce : void -> ’a
val escape : ((’a -> void) -> ’a) -> ’a

end

structure Escape : ESCAPE
= struct

open SMLofNJ.Cont
datatype void = VOID of void
fun coerce (VOID v) = coerce v
fun escape f = callcc (fn k => f (fn x => throw k x))

end

4The meta-contexts remain defunctionalized, and therefore cannot be eliminated from the evaluator (and
thus the monad and implementation) via direct-style transformation.
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signature SHIFT_AND_RESET
= sig

type answer
val shift : ((’a -> answer) -> answer) -> ’a
val reset : (unit -> answer) -> answer
val run : (unit -> answer) -> answer

end

functor make_Shift_and_Reset (type answer) : SHIFT_AND_RESET
= struct

open Escape
type answer = answer
exception MISSING_RESET
val mk : (answer -> void) ref = ref (fn _ => raise MISSING_RESET)
fun abort x = coerce (!mk x)
fun reset t

= escape (fn k => let val m = !mk
in mk := (fn r => (mk := m; k r)); abort (t ())
end)

fun shift h
= escape (fn k => abort (h (fn v => reset (fn () => coerce (k v)))))

fun run c = prompt c
end
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