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Abstract

We show that breadth-first traversal exploits the difference between the static delimited-control
operator shift (alias S) and the dynamic delimited-control operator control (alias F). For the
last 15 years, this difference has been repeatedly mentioned in the literature but it has only been
illustrated with one-line toy examples. Breadth-first traversal fills this vacuum.

1 Introduction

Continuation-passing style (CPS) is a time-honored and logic-based format for functional programs
where all intermediate results are named, all calls are tail calls, and programs are evaluation-order
independent [16, 17, 19]. While this format has been an active topic of study, it also has been felt
as a straightjacket both from a semantics point of view [8, 10] and from a programming point of
view [6], where one would like to relax the tail-call constraint and compose continuations.

In direct style, continuations are accessed with control operators such as Reynolds’s escape [17]
and Scheme’s call/cc. These control operators give access to the current continuation as a first-
class value. Activating such a first-class continuation has the effect of resuming the computation
at the point where this continuation was captured; the then-current continuation is abandoned.
Such first-class continuations do not return to the point of their activation—they model jumps,
i.e., tail calls [19, 20].

In direct style, composable continuations are also accessed with control operators such as Felleisen
et al.’s control (alias F) [10] and Danvy and Filinski’s shift (alias S) [6]. These control operators
also give access to the current continuation as a first-class value; activating such a first-class con-
tinuation also has the effect of resuming the computation at the point where this continuation was
captured; the then-current continuation, however, is then resumed. Such first-class continuations
return to the point of their activation—they model non-tail calls.

For a first-class continuation to return to the point of its activation, one must declare its point
of completion, since this point is no longer at the very end of the overall computation, as with
traditional, undelimited first-class continuations. In direct style, this declaration is achieved with a
new kind of operator, due to Felleisen [8]: a control delimiter. The control delimiter corresponding
to control is called prompt (alias #). The control delimiter corresponding to shift is called reset

(alias 〈〈〈·〉〉〉) and its continuation-passing counterpart is a classical backtracking idiom in functional
programming [21]. Other, more advanced, delimited-control operators exist [12, 14]; we return to
them in the conclusion.

In the present work, we focus on shift and control.
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Overview: In Section 2, we present an environment-based abstract machine that specifies the
behaviors of shift and control, and we show how the extent of a shift-abstracted delimited
continuation is static whereas that of a control-abstracted delimited continuation is dynamic.
In Section 3, we present an array of solutions to the traditional samefringe example and to its
breadth-first counterpart, using Filinski’s implementation of shift and reset in ML [11] and Shan’s
subsequent implementation of control and prompt in Scheme [18]. Filinski’s implementation takes
the form of an ML functor mapping the type of intermediate answers to a structure containing an
instance of the control operators at that type:

signature SHIFT_AND_RESET

= sig

type intermediate_answer

val shift : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a

val reset : (unit -> intermediate_answer) -> intermediate_answer

end

For the purpose of this article, we have adapted Shan’s implementation from Scheme macros to
an ML functor with a similar signature:

signature CONTROL_AND_PROMPT

= sig

type intermediate_answer

val control : ((’a -> intermediate_answer) -> intermediate_answer) -> ’a

val prompt : (unit -> intermediate_answer) -> intermediate_answer

end

Prerequisites and preliminaries: Besides some awareness of CPS and the CPS transforma-
tion [6,16,19], we assume a passing familiarity with defunctionalization [7,17]. Our programming
language of discourse is Standard ML.

2 An operational characterization

In our previous work [2], we derived an environment-based abstract machine for the λ-calculus
with shift and reset by defunctionalizing its definitional interpreter [6]. We use this abstract
machine to explain the static extent of the delimited continuations abstracted by shift and the
dynamic extent of the delimited continuations abstracted by control.

2.1 An abstract machine for shift and reset

The abstract machine is displayed in Figure 1. The set of possible values consists of closures and
captured contexts. The machine extends Felleisen et al.’s CEK machine [9] with a meta-context C2,
the two transitions for 〈〈〈·〉〉〉 and S, and the transition for applying a captured context to a value in a
context and a meta-context. Intuitively, a context represents the rest of the computation up to the
nearest enclosing delimiter, and a meta-context represents all of the remaining computation [5].
We describe this machine in more detail in an extended version of this article [4].

2.2 An abstract machine for control and prompt

Unlike shift and reset, whose definition is based on CPS, control and prompt are specified
by representing delimited continuations as a list of stack frames and their composition as the
concatenation of these representations [10]. Such a concatenation function ? is defined as follows:

END ? C ′

1 = C ′

1

(ARG ((t, e), C1)) ? C ′

1 = ARG ((t, e), C1 ? C ′

1)

(FUN (v, C1)) ? C ′

1 = FUN (v, C1 ? C ′

1)
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• Terms: t ::= x | λx .t | t0 t1 | 〈〈〈t〉〉〉 | Sk .t

• Values (closures and captured continuations): v ::= [x , t, e] | C1

• Environments: e ::= eempty | e[x 7→ v]

• Contexts: C1 ::= END | ARG ((t, e), C1) | FUN (v, C1)

• Meta-contexts: C2 ::= • | C1 · C2

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, eempty , END, •〉eval

〈x , e, C1, C2〉eval ⇒ 〈C1, e (x ), C2〉cont1

〈λx .t, e, C1, C2〉eval ⇒ 〈C1, [x , t, e], C2〉cont1

〈t0 t1, e, C1, C2〉eval ⇒ 〈t0, e, ARG ((t1, e), C1), C2〉eval

〈〈〈〈t〉〉〉, e, C1, C2〉eval ⇒ 〈t, e, END, C1 · C2〉eval

〈Sk .t, e, C1, C2〉eval ⇒ 〈t, e[k 7→ C1], END, C2〉eval

〈END, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈ARG ((t, e), C1), v, C2〉cont1 ⇒ 〈t, e, FUN (v, C1), C2〉eval

〈FUN ([x , t, e], C1), v, C2〉cont1 ⇒ 〈t, e[x 7→ v], C1, C2〉eval

〈FUN (C ′

1
, C1), v, C2〉cont1 ⇒ 〈C ′

1
, v, C1 · C2〉cont1

〈C1 · C2, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Fig. 1. A call-by-value environment-based abstract machine for the λ-calculus extended

with shift (S) and reset (〈〈〈·〉〉〉)

It is then simple to modify the abstract machine to compose delimited continuations by concate-
nating their representation: in Figure 1, one merely replaces the transition applying a captured
context C ′

1
by pushing the current context C1 onto the meta-context C2, i.e.,

〈FUN (C ′

1
, C1), v, C2〉cont1 ⇒ 〈C ′

1
, v, C1 · C2〉cont1

with a transition that applies a captured context C ′

1
by concatenating it with the current context

C1:

〈FUN (C ′

1
, C1), v, C2〉cont1 ⇒ 〈C ′

1
? C1, v, C2〉cont1

This change gives shift the behavior of control. In contrast, reset and prompt have the same
definition. The rest of the machine does not change.

In our previous work [2, Sec. 4.5], we have pointed out that the dynamic behavior of control

is incompatible with CPS because the modified abstract machine no longer corresponds to a
defunctionalized continuation-passing evaluator [7]. Indeed shift is static, whereas control is
dynamic in the following sense:
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• shift captures a delimited continuation in a representation C1 that remains distinct from the
current context C ′

1
, when it is applied. Consequently, the current context C ′

1
cannot be accessed

from C1 by another use of shift.
• control captures a delimited continuation in a representation C1 that grafts itself to the current

context C ′

1
, when it is applied. Consequently, the current context C ′

1
can be accessed from C1

by another use of control.

This difference of behavior can be observed with delimited continuations that, when applied, cap-
ture the current continuation. A control-abstracted delimited continuation dynamically captures
the current continuation, above and beyond its point of activation, whereas a shift-given delimited
continuation statically captures the current continuation up to its point of resumption.

3 The samefringe problem

We present a spectrum of solutions to the samefringe problem, both in its traditional depth-
first form and in its breadth-first counterpart. We work on Lisp-like binary trees of integers (S-
expressions):

datatype tree = LEAF of int | NODE of tree * tree

The samefringe problem is traditionally stated as follows. Given two trees of integers, one wants to
know whether they have the same sequence of leaves when read from left to right. Let us consider,
for example, the two following trees:

����
�

��
>>

>

����
�

��
;;

;
765401233

765401231 765401232

����
�

��
<<

<

765401231
����

�
��

;;
;

765401232 765401233

These two trees arise from evaluating NODE (NODE (LEAF 1, LEAF 2), LEAF 3) and NODE (LEAF 1,

NODE (LEAF 2, LEAF 3)). Even though they are shaped differently, they have the same fringe [1,

2, 3] (representing it as a list). Computing a fringe is done by traversing a tree depth-first and
from left to right.

By analogy, we also address the breadth-first counterpart of the samefringe problem. Given two
trees of integers, we want to know whether they have the same fringe when traversed in left-to-
right breadth-first order. For example, the breadth-first fringe of the left tree just above is [3, 1,

2] and that of the right tree just above is [1, 2, 3].

We express the samefringe function generically by abstracting the representation of sequences of
leaves with a data type sequence and a notion of computation (to compute the next element in a
sequence):

signature GENERATOR

= sig

type ’a computation

datatype sequence = END | NEXT of int * sequence computation

val make_sequence : tree -> sequence

val compute : sequence computation -> sequence

end

Given a generator satisfying this signature, we can write a samefringe function that maps two
given trees into two sequences of integers and iteratively traverses these sequences, stopping as
soon as one of the two sequences is exhausted or two differing leaves are found.
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3.1 Depth first

3.1.1 A lazy traversal: The usual solution to the samefringe problem is to construct the se-
quences lazily and to traverse them on demand. In the following generator, the data type sequence

implements lazy sequences; the construction of the rest of the lazy sequence is delayed with a thunk
of type unit -> sequence; and make sequence is defined as an accumulator-based flatten function:

structure Lazy_generator : GENERATOR

= struct

datatype sequence = END | NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

(* visit : tree * sequence computation -> sequence *)

fun visit (LEAF i, a)

= NEXT (i, a)

| visit (NODE (t1, t2), a)

= visit (t1, fn () => visit (t2, a))

fun make_sequence t = visit (t, fn () => END)

fun compute thunk = thunk ()

end

The construction of the sequence in Lazy generator and the comparisons in same fringe are
interleaved. This choice is known to be efficient because if two leaves differ, the remaining two
sequences are not built at all.

3.1.2 A continuation-based traversal: Alternatively to viewing the thunk of type unit ->

sequence, in the lazy traversal of Section 3.1.1, as a functional device to implement laziness, we can
view it as a delimited continuation that is initialized in the initial call to visit in make sequence,
extended in the induction case of visit, captured in the base case of visit, and resumed in
compute. From that viewpoint, the lazy traversal is also a continuation-based one.

3.1.3 A direct-style traversal with shift and reset: In direct style, the initialization of the
delimited continuation a of Section 3.1.2 is obtained with the control delimiter reset, its extension
is obtained by functional sequencing, its capture is obtained with the delimited-control operator
shift, and its resumption is obtained by function application.

Using Filinski’s functor Shift and Reset, one can therefore define the lazy generator in direct style
as follows:

structure Lazy_generator_with_shift_and_reset : GENERATOR

= struct

datatype sequence = END | NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

local structure SR = Shift_and_Reset (type intermediate_answer = sequence)

in val shift = SR.shift

val reset = SR.reset

end

(* visit : tree -> unit *)

fun visit (LEAF i)

= shift (fn a => NEXT (i, a))

| visit (NODE (t1, t2))

= let val () = visit t1 in visit t2 end

fun make_sequence t = reset (fn () => let val () = visit t in END end)

fun compute thunk = thunk ()

end

CPS-transforming visit and make sequence yields the definitions of Section 3.1.1. The key point
of this CPS transformation is that given a continuation k, the expression let val () = visit t1

in visit t2 end is transformed into visit (t1, fn () => visit (t2, k)).
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3.1.4 A stack-based traversal: Alternatively to writing the lazy solution in direct style, we
can defunctionalize its computation (which has type sequence computation, i.e., unit -> sequence)
and obtain a first-order solution [7, 17]. The inhabitants of the function space unit -> sequence

are instances of the function abstractions in the initial call to visit (i.e., fn () => END) and in the
induction case of visit (i.e., fn () => visit (t2, a)). We therefore represent this function space
by (1) a sum corresponding to these two possibilities, and (2) the corresponding apply function,
continue, to interpret each of the summands. We represent this sum with an ML data type, which
is recursive because of the recursive call to visit. This data type is isomorphic to that of a list
of subtrees, which we use for simplicity in the code below. The result is essentially McCarthy’s
solution [13]:

structure Lazy_generator_stack_based : GENERATOR

= struct

datatype sequence = END | NEXT of int * sequence computation

withtype ’a computation = tree list

(* visit : tree * tree list -> sequence *)

fun visit (LEAF i, a)

= NEXT (i, a)

| visit (NODE (t1, t2), a)

= visit (t1, t2 :: a)

(* continue : tree list * unit -> sequence *)

and continue (nil, ())

= END

| continue (t :: a, ())

= visit (t, a)

fun make_sequence t = visit (t, nil)

fun compute a = continue (a, ())

end

This solution traverses a given tree incrementally by keeping a stack of its subtrees. To make
this point more explicit, and as a stepping stone towards breadth-first traversal, let us fold the
definition of continue in the induction case of visit so that visit always calls continue:

| visit (NODE (t1, t2), a)

= continue (t1 :: t2 :: a, ())

(Unfolding the call to continue gives back the definition above.)

We now clearly have a stack-based definition of depth-first traversal, and furthermore we have
shown that this stack corresponds to the continuation of a function implementing a recursive
descent.

3.2 Breadth first

3.2.1 A queue-based traversal: Replacing the (last-in, first-out) stack, in the definition of
Section 3.1.4, by a (first-in, first-out) queue yields a definition that implements breadth-first,
rather than depth-first, traversal:

structure Lazy_generator_queue_based : GENERATOR

= struct

datatype sequence = END | NEXT of int * sequence computation

withtype ’a computation = tree list
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(* visit : tree * tree list -> sequence *)

fun visit (LEAF i, a)

= NEXT (i, a)

| visit (NODE (t1, t2), a)

= continue (a @ [t1, t2], ())

(* continue : tree list * unit -> sequence *)

and continue (nil, ())

= END

| continue (t :: a, ())

= visit (t, a)

fun make_sequence t = visit (t, nil)

fun compute a = continue (a, ())

end

In contrast to Section 3.1.4, where the clause for nodes was (essentially) concatenating the two
subtrees in front of the list of subtrees

| visit (NODE (t1, t2), a)

= continue ([t1, t2] @ a, ()) (* then *)

the clause for nodes is concatenating the two subtrees in the back of the list of subtrees:

| visit (NODE (t1, t2), a)

= continue (a @ [t1, t2], ()) (* now *)

Nothing else changes in the definition of the generator. In particular, subtrees are still removed
from the front of the list of subtrees by continue. With this last-in, first-out policy, the generator
yields a sequence in breadth-first order.

Because the ::-constructors of the list of subtrees are not solely consumed by continue but also by
@, this definition is not in the range of defunctionalization [2, 7]. Therefore, even though visit is
tail-recursive and constructs a data structure that is interpreted in continue, it does not correspond
to a continuation-passing function. And indeed, it is well-known that traversing an inductive data
structure breadth-first does not mesh with the visitor pattern of functional programming, i.e.,
compositional recursive descent (catamorphism).

3.2.2 A direct-style traversal with control and prompt: The critical operation in the
definition of visit, in Section 3.2.1, is the enqueuing of the subtrees t1 and t2 to the current queue
a, which is achieved by the list concatenation a @ [t1, t2]. We observe that this concatenation
matches the concatenation of stack frames in the specification of control in Section 2.2.

Therefore—and this is a eureka step—one can write visit in direct style using control and prompt.
To this end, we represent both queues a and [t1, t2] as dynamic delimited continuations in such
a way that their composition represents the concatenation of a and [t1, t2]. The direct-style
traversal reads as follows:

structure Lazy_generator_with_control_and_prompt : GENERATOR

= struct

datatype sequence = END | NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

local structure CP = Control_and_Prompt (type intermediate_answer = sequence)

in val control = CP.control

val prompt = CP.prompt

end
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(* visit : tree -> unit *)

fun visit (LEAF i)

= control (fn a => NEXT (i, a))

| visit (NODE (t1, t2))

= control (fn a => let val END = a ()

val () = visit t1

val () = visit t2

in END

end)

fun make_sequence t

= prompt (fn () => let val () = visit t

in END

end)

fun compute a = prompt (fn () => a ())

end

In the induction case, the current delimited continuation (representing the current control queue)
is captured, bound to a, and applied to (). The implicit continuation of this application visits
t1 and then t2, and therefore represents the queue [t1, t2]. Applying a seals it to the implicit
continuation so that any continuation captured by a subsequent recursive call to visit in a captures
both the rest of a and the traversal of t1 and t2, i.e., the rest of the new control queue.

3.3 Summary and conclusion

We first have presented a spectrum of solutions to the traditional samefringe problem. The one
using shift and reset is new. We believe that connecting the lazy solution with McCarthy’s
stack-based solution by defunctionalization is new as well.

By replacing the stack with a queue in the stack-based program, we then have obtained a solution
to the breadth-first counterpart of the samefringe problem. Viewing this queue as a ‘data-structure
continuation’ [22, page 179], we have observed that the operations upon it correspond to the
operations induced by the composition of dynamic delimited continuations. We have then re-
expressed this program using control and prompt.

In the induction clause of visit in Section 3.2.2, if we returned after visiting t1 and t2 instead of
before,

| visit (NODE (t1, t2))

= control (fn a => let val () = visit t1

val () = visit t2

in a ()

end)

we would obtain depth-first traversal. This modified clause can be simplified into

| visit (NODE (t1, t2))

= let val () = visit t1

in visit t2

end

which coincides with the corresponding clause in Section 3.1.3. The resulting pattern of use of
control and prompt in the modified definition is the traditional one used to simulate shift and
reset [3].

It is therefore simple to program depth-first traversal with control and prompt. But conversely,
obtaining a breadth-first traversal using shift and reset would require a far less simple encoding
of control and prompt in terms of shift and reset [18].
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4 Conclusion and issues

Over the last 15 years, it has been repeatedly claimed that control has more expressive power
than shift. Even though this claim is now disproved [18], it is still unclear how to program with
control-like dynamic delimited continuations. In fact, in 15 years, only toy examples have been
advanced to illustrate the difference between static and dynamic delimited continuations.

In this article, we have filled this vacuum by using dynamic delimited continuations to pro-
gram breadth-first traversal. We have accounted for the dynamic queuing mechanism inherent to
breadth-first traversal with the dynamic concatenation of stack frames that is specific to control

and that makes it go beyond what is traditionally agreed upon as being continuation-passing
style (CPS). We have presented one simple example of breadth-first traversal: the breadth-first
counterpart of the traditional samefringe function. The extended version of this article [4] con-
tains another example, breadth-first numbering [15], and we have recently proposed yet another
one [2, page 20] [3, page 5].

Since control, even more dynamic delimited-control operators have been proposed [12, 14], all of
which go beyond CPS but only two of which, to the best of our knowledge, come with motivating
examples illustrating their specificity:

• In his PhD thesis [1], Balat uses the extra expressive power of Gunter, Rémy, and Riecke’s
control operators set and cupto over that of shift and reset to prototype a type-directed
partial evaluator for the lambda-calculus with sums.

• In his PhD thesis [14], Nanevski introduces two new dynamic delimited-control operators, mark
and recall, and illustrates them with a function partitioning a natural number into the lists
of natural numbers that add to it. He considers both depth-first and breadth-first generation
strategies, and conjectures that the latter cannot be written using shift and reset. His is thus
our closest related work.

These applications are rare and so far they tend to be daunting. Dynamic delimited continuations
need simpler examples, more reasoning tools, and more program transformations.
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