
Recursion
Homework

Piotr Polesiuk

May 7, 2014

You have to prove that during evaluation of a program with equi-recursive types no
stuck-terms will occur, i.e., you should prove the following theorem:

Theorem (Progress). If ∅ ` e : τ then either e is a value or there exists an expression
e′ such that e → e′.

There are two variants of the task: informal and formal. You have to pick one of
them, solve it, and send the solution to Piotr.Polesiuk@cs.uni.wroc.pl. Deadline is
June 10, 2014.

1. Informal variant

• Add equi-recursive types to the simply-typed ς-calculus in the analogous way as
they are defined in appendix A.

• Define a reduction semantics in call-by-value order.

• Give an informal proof of the progress theorem.

• Why is the syntactic requirement from appendix A important?

Hint Look at the hint for the formal variant.

2. Formal variant

Formalize the proof of the progress theorem for the calculus defined in appendix A in
your favorite proof-assistant (preferred are: Coq and Agda). If you are using Coq, you
may use definitions from the file homework.v.

Hint Two following lemmas would be useful:

Lemma. If ∅ ` τ1 ≡ τ2 then τ1 has the form µα1. . . . µαn.τ
′
1 → τ ′′1 iff τ2 has the form

µβ1. . . . µβm.τ
′
2 → τ ′′2 .

Lemma (Inversion). If ∅ ` v : µα1. . . . µαn.τ
′
1 → τ ′′1 then the value v is a λ-abstraction.

1

A. λ-calculus with recursive types and unit type

Syntax
e ::= x | λx.e | e e | 1 (expressions)
v ::= λx.e | 1 (values)
τ ::= α | τ → τ | 1 | µα.τ (types)

Syntactic requirement: No type variable occurs directly under the µ construct,
i.e., types of the form µα.β are forbidden.

Type-equating rules

∆ ` τ ≡ τ
(Eq-Refl)

∆ ` τ2 ≡ τ1
∆ ` τ1 ≡ τ2

(Eq-Symm)
(τ1 ≡ τ2) ∈ ∆

∆ ` τ1 ≡ τ2
(Eq-Ax)

∆ ` τ1 ≡ τ2 ∆ ` τ ′1 ≡ τ ′2
∆ ` τ1 → τ ′1 ≡ τ2 → τ ′2

(Eq-Arrow)
∆, µα.τ ≡ τ ′ ` τ{|α← µα.τ |} ≡ τ ′

∆ ` µα.τ ≡ τ ′
(Eq-Fix)

Typing rules

(x : τ) ∈ Γ

Γ ` x : τ
(T-Var)

Γ, x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

(T-Abs)

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2
Γ ` e1 e2 : τ1

(T-App)
Γ ` 1 : 1

(T-Unit)

Γ ` e : τ1 ∅ ` τ1 ≡ τ2
Γ ` e : τ2

(T-Conv)

Reduction semantics

(λx.e) v → e{|x← v|}
(E-Beta)

e1 → e′1
e1 e2 → e′1 e2

(E-Func)
e → e′

v e → v e′
(E-Arg)

2

