Recursion

Homework
Piotr Polesiuk

May 7, 2014

You have to prove that during evaluation of a program with equi-recursive types no
stuck-terms will occur, i.e., you should prove the following theorem:

Theorem (Progress). If @ e : 7 then either e is a value or there exists an expression
¢/ such thate — €.

There are two variants of the task: informal and formal. You have to pick one of
them, solve it, and send the solution to Piotr.Polesiuk@cs.uni.wroc.pl. Deadline is
June 10, 2014.

1. Informal variant

e Add equi-recursive types to the simply-typed ¢-calculus in the analogous way as
they are defined in appendix A.

e Define a reduction semantics in call-by-value order.
e Give an informal proof of the progress theorem.

e Why is the syntactic requirement from appendix A important?

Hint Look at the hint for the formal variant.

2. Formal variant

Formalize the proof of the progress theorem for the calculus defined in appendix A in
your favorite proof-assistant (preferred are: Coq and Agda). If you are using Coq, you
may use definitions from the file homework.v.

Hint Two following lemmas would be useful:
Lemma. If @b 71 = 7o then 71 has the form poy. ... poy. 1 — 71 iff T2 has the form
WOL- - P Ty — T

Lemma (Inversion). If @ Fv @ pag....poy. 7 — 71 then the value v is a A-abstraction.

A.)\-calculus with recursive types and unit type

Syntax
e = x|Azel|ee]|l (expressions)
v ou= Azwe |l (values)
T = a|T—=>7|1|poer (types)

Syntactic requirement: No type variable occurs directly under the p construct,
i.e., types of the form pa.B are forbidden.

Type-equating rules

(E R) Al—TQ = TI(E S) (TlETQ)EA(E A)
——— (EQ-REFL — —(EqQ-Sy™mm ————(EQ-AX
AT =71 ° AT = n ° AT = 7 ?
Abm =1 AT =75 A par =7 Frfa+— parlp = 7
EQ-AR EQ-F
AbFT =71 = 1 —T) (EQ-ArROW) Al par = 7 (Ba-Frx)
Typing rules
(a::T)GF(TV) z:mbe : m (T-Ass)
7 -VA -ABS
'tz @ 71 * I'FXXze : 71— m
F|—61:T2—>T1 Fl—egiTQ
T-A —(T-
Fl—eleg LT (PP) 'H1:]l(UNIT)
I'te: nn OFbm = 7m
Tre : m (T-Conv)
Reduction semantics
(E-Br1a) e — €] (E-Foxc) e — € (E-Arc)
-BETA ———— (E-Func ——(E-ARcG
(Az.e)v — efz v} e1 e — €] e ve = ve

