Recursion

Homework

Piotr Polesiuk

May 7, 2014

You have to prove that during evaluation of a program with equi-recursive types no stuck-terms will occur, i.e., you should prove the following theorem:

Theorem (Progress). If $\varnothing \vdash e: \tau$ then either e is a value or there exists an expression e^{\prime} such that $e \rightarrow e^{\prime}$.

There are two variants of the task: informal and formal. You have to pick one of them, solve it, and send the solution to Piotr.Polesiuk@cs.uni.wroc.pl. Deadline is June 10, 2014.

1. Informal variant

- Add equi-recursive types to the simply-typed ς-calculus in the analogous way as they are defined in appendix A.
- Define a reduction semantics in call-by-value order.
- Give an informal proof of the progress theorem.
- Why is the syntactic requirement from appendix A important?

Hint Look at the hint for the formal variant.

2. Formal variant

Formalize the proof of the progress theorem for the calculus defined in appendix A in your favorite proof-assistant (preferred are: Coq and Agda). If you are using Coq, you may use definitions from the file homework.v.

Hint Two following lemmas would be useful:
Lemma. If $\varnothing \vdash \tau_{1} \equiv \tau_{2}$ then τ_{1} has the form $\mu \alpha_{1} \ldots \mu \alpha_{n} . \tau_{1}^{\prime} \rightarrow \tau_{1}^{\prime \prime}$ iff τ_{2} has the form $\mu \beta_{1} \ldots \mu \beta_{m} . \tau_{2}^{\prime} \rightarrow \tau_{2}^{\prime \prime}$.
Lemma (Inversion). If $\varnothing \vdash v: \mu \alpha_{1} \ldots \mu \alpha_{n} . \tau_{1}^{\prime} \rightarrow \tau_{1}^{\prime \prime}$ then the value v is a λ-abstraction.

A. λ-calculus with recursive types and unit type

Syntax

e	$::=$	$x\|\lambda x . e\|$ e $e \mid 1$	(expressions)
v	$::=\lambda x . e \mid 1$	(values)	
τ	$::=\alpha\|\tau \rightarrow \tau\| \mathbb{1} \mid \mu \alpha . \tau$	(types)	

Syntactic requirement: No type variable occurs directly under the μ construct, i.e., types of the form $\mu \alpha . \beta$ are forbidden.

Type-equating rules

$$
\begin{gathered}
\frac{\Delta \vdash \tau_{2} \equiv \tau_{1}}{\Delta \vdash \tau \equiv \tau}(\text { EQ-REFL }) \\
\frac{\Delta \vdash-\mathrm{SYMM})}{\Delta \vdash \tau_{1} \equiv \tau_{2}} \quad \frac{\left(\tau_{1} \equiv \tau_{2}\right) \in \Delta}{\Delta \vdash \tau_{1} \equiv \tau_{2}}(\mathrm{EQ}-\mathrm{Ax}) \\
\Delta \vdash \tau_{1} \rightarrow \tau_{1}^{\prime} \equiv \tau_{2} \rightarrow \tau_{2}^{\prime}
\end{gathered}(\mathrm{EQ}-\mathrm{ARROW}) \quad \frac{\left.\Delta, \mu \alpha . \tau \equiv \tau^{\prime} \vdash \tau\{\alpha \leftarrow \mu \alpha \cdot \tau\}\right\} \equiv \tau^{\prime}}{\Delta \vdash \mu \alpha \cdot \tau \equiv \tau^{\prime}}(\mathrm{EQ}-\mathrm{FIx})
$$

Typing rules

$$
\begin{gathered}
\frac{(x: \tau) \in \Gamma}{\Gamma \vdash x: \tau}(\mathrm{T}-\mathrm{VAR}) \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}}(\mathrm{~T}-\mathrm{ABS}) \\
\frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}(\mathrm{~T}-\mathrm{APP}) \quad \overline{\Gamma \vdash 1: \mathbb{1}^{(\mathrm{T}-\mathrm{UNIT})}} \\
\frac{\Gamma \vdash e: \tau_{1} \quad \varnothing \vdash \tau_{1} \equiv \tau_{2}}{\Gamma \vdash e: \tau_{2}}(\mathrm{~T}-\mathrm{Conv})
\end{gathered}
$$

Reduction semantics

$$
\overline{(\lambda x . e) v \rightarrow e\{|x \leftarrow v|\}}(\mathrm{E}-\mathrm{BETA}) \quad \frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}}(\mathrm{E}-\mathrm{FuNC}) \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}}(\mathrm{E}-\mathrm{ARG})
$$

