Higher-Order Calculus

Piotr Krzemiński

Wrocław, 4th June 2014

Introduction

- we start from $\mathrm{Ob}_{1<\text { : }}$
- structure rule for method update and variance annotations
- higher-order subtyping, based on Girard's \mathbf{F}_{ω}
- finally we obtain $\mathrm{Ob}_{\omega<: \mu}$

Type operators

$$
\lambda(X) \forall(Y<: X) Y
$$

This is example of so-called type operator. It's mapping from type X to the type $\forall(Y<: X) Y$.

Kinds

A structure of kinds is introduced to classify types and operators (collectively called constructors).

- the kind of all types is called Ty
- an operator from types to types has kind $T y \Rightarrow T y$
- higher-order operators can be expressed as well, such as ($T y \Rightarrow T y$) $\Rightarrow T_{y}$
- in general, kind $K \Rightarrow L$ is the kind of operators mapping kind K to kind L
- we write $A:: K$ to say that constructor A has kind K

Higher-order subtyping

Subtype relation is generalized to a higher-order: the subconstructor (or simply, inclusion) relation.

- on types, it reduces to ordinary subtyping
- on operators it is defined as pointwise inclusion:
- $B<: B^{\prime}$ holds at kind $K \Rightarrow L$ if for all A of kind K we have $B(A)<: B^{\prime}(A)$ at kind L
- fully we write $A<: B:: K$ meaning the constructors A and B are both of kind K and A is included in B
- for example, $A<$: Top is written in full as $A<:$ Top :: Ty

Syntax

$K, L::=$	kinds
$T y$	types
$K \Rightarrow L$	operators from K to L
$A, B::=$	constructors
X	constructor variable
$T o p$	the biggest constructor at kind $T y$
$\left[l_{i} v_{i}: B_{i} i \in 1 . . n\right]$	object type $\left(l_{i}\right.$ distinct, $\left.v_{i} \in\left\{0^{\circ},-+\right\}\right)$
$\forall(X<: A:: K) B$	bounded universal type
$\mu(X) A$	recursive type
$\lambda(X:: K) B$	operator
$B(A)$	operator application
$a, b::=$	terms
x	variable
$\left[l=\zeta\left(x_{i}: A_{i}\right) b_{i} i \in 1 . . n\right]$	object formation $\left(l_{i}\right.$ distinct $)$
$a . l$	method invocation
$a . l=\zeta(x: A) b$	method update
$\lambda(X<: A:: K) b$	constructor abstraction
$b(A)$	constructor application
$f o l d(A, a)$	recursive fold
$u n f o l d(a)$	recursive unfold

- $X<: A$:: K is general form of bounds for constructors
- bounded universal types and constructor abstractions
- operators have restricted bounds (of the form $X:: K$) to simplify technical treatment of higher-order features
- we do not include primitive existential quantifiers nor function types

Example

Our initial example of an operator written in full as:

$$
\lambda(X:: T y) \forall(Y<: X:: T y) Y:: T y \Rightarrow T y
$$

Results

Results are described by the following grammar.

$$
\begin{array}{ll}
v & ::= \\
& {\left[l_{i}=\zeta\left(x_{i}: A_{i}\right) b_{i}{ }^{i \epsilon 1 . . n}\right]} \\
& \lambda(X<: A: K) b \\
& \text { fold }(A, v)
\end{array}
$$

results
object result
constructor abstraction result recursion result

Semantics (1/2)

(Red Object) (where $\left.v \equiv\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \epsilon 1 . . n}\right]\right)$

$$
\overline{\vdash v \rightsquigarrow v}
$$

(Red Select) (where $\left.v^{\prime} \equiv\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}\left\{x_{i}\right)^{i \in 1 . . n}\right]\right)$
$\frac{\vdash a \rightsquigarrow v^{\prime} \quad \vdash b_{j}\left\{v^{\prime}\right\} \rightsquigarrow v \quad j \in 1 . . n}{\vdash a . l_{j} \rightsquigarrow v}$

$$
\begin{aligned}
& \text { (Red Update) } \\
& \qquad \frac{\vdash a \rightsquigarrow\left[l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}^{i \in 1 . . n}\right] \quad j \in 1 . . n}{\vdash a . l_{j} \leqslant \zeta(x: A) b \rightsquigarrow\left[l_{j}=\varsigma\left(x: A_{j}\right) b, l_{i}=\varsigma\left(x_{i}: A_{i}\right) b_{i}{ }^{i \in(1 . . n)-1 j]}\right]}
\end{aligned}
$$

Semantics (2/2)

(Red Fun2::) (where $v \equiv \lambda(X<: A:: K) b)$

```
\vdashv\rightsquigarrowv
```

(Red Appl2::)
$\frac{\left.\vdash b \rightsquigarrow \lambda(X<: A:: K) c\{X\} \quad \vdash c \sharp A^{\prime}\right\} \rightsquigarrow v}{\vdash b\left(A^{\prime}\right) \rightsquigarrow v}$
(Red Fold)

$$
\frac{\vdash b \rightsquigarrow v}{\vdash \operatorname{fold}(A, b) \rightsquigarrow \operatorname{fold}(A, v)}
$$

(Red Unfold)
$\vdash a \rightsquigarrow \operatorname{fold}(A, v)$
\vdash unfold $(a) \backsim v$

Judgments

The type rules of $\mathbf{O b}_{\omega<: \mu}$ are formulated in terms of following judgments.

$$
\begin{aligned}
& E \vdash \diamond \\
& E \vdash K \text { kind } \\
& E \vdash A:: K \\
& E \vdash A \leftrightarrow B:: K \\
& E \vdash A<: B:: K \\
& E \vdash v A<: v^{\prime} B \\
& E \vdash a: A
\end{aligned}
$$

E is an environment
K is a kind
constructor A has kind K
A and B are equivalent constructors of kind K
A is a subconstructor of B, both of kind K
A is a subtype of B according to variances v and v^{\prime} a is a value of type A

- $E \vdash A \leftrightarrow B:: K$ needed because presence of operators entails computation at constructor level
- for example theory implies that $(\lambda(X:: T y) \forall(Y<: X:: T y) Y)(T o p)$ equals $\forall(Y<:$ Top :: Ty $) Y$
- there is no judgment for equivalence of terms

Notation

Several abbreviations are extensively used to omit some bounds and some kinds.

$\lceil T y\rceil$	$\triangleq T o p$	
$\lceil K \Rightarrow L\rceil$	$\triangleq \lambda(X:: K)\lceil L\rceil$	
$X:: K$	$\triangleq X<:\lceil K\rceil:: K$	(in environments and some binders)
$X<: A$	$\triangleq X<: A:: T y$	(in environments and some binders)
X	$\triangleq X<: T o p:: T y$	(in environments and some binders)
$E \vdash A$	$\triangleq E \vdash A:: T y$	
$E \vdash A \leftrightarrow B$	$\triangleq E \vdash A \leftrightarrow B:: T y$	
$E \vdash A<: B$	$\triangleq E \vdash A<: B:: T y$	

- $\lceil K\rceil$ denotes maximum constructor at kind K

Environment \& Kind formation

$$
\begin{aligned}
& \text { (Env } \varnothing) \quad(\operatorname{Env} \mathrm{X}<:) \quad(\operatorname{Env} x) \\
& \frac{E \vdash A:: K \quad X \notin \operatorname{dom}(E)}{E, X<: A:: K \vdash \diamond} \quad \frac{E \vdash A \quad x \notin \operatorname{dom}(E)}{E, x: A \vdash \diamond} \\
& \begin{array}{ll}
\begin{array}{l}
\text { (Kind Ty) } \\
E \vdash \diamond
\end{array} & \text { (Kind } \Rightarrow \text {) } \\
\frac{E \vdash K \text { kind } \quad E \vdash L \text { kind }}{}
\end{array}
\end{aligned}
$$

Constructor formation

(Con X)
(Con Top)
$\frac{E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash \diamond}{E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash X:: K}$

(Con Object) \quad (l_{i} distinct, $\left.v_{i} \in\left\{{ }^{0},-+\right\}\right)$	(Con All)	(Con Rec)
$E \vdash B_{i} \quad \forall i \in 1 . . n$		
$E \vdash\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]$		$E, X<: A:: K \vdash B$
$E \vdash \forall(X<: A:: K) B$		$E, X \vdash A$
$\vdash \mu(X) A$		

(Con Abs)
$\frac{E, X:: K \vdash B:: L}{E \vdash \lambda(X:: K) B:: K \Rightarrow L}$
(Con Appl)

$$
\frac{E \vdash B:: K \Rightarrow L \quad E \vdash A:: K}{E \vdash B(A):: L}
$$

Constructor equivalence (1/3)

(Con Eq Symm)	(Con Eq Trans)
$E \vdash A \leftrightarrow B:: K$	$E \vdash A \leftrightarrow B:: K \quad E \vdash B \leftrightarrow C:: ~ K$
$E \vdash B \leftrightarrow A:: K$	$E \vdash A \leftrightarrow C:: K$
($\mathrm{Con} \mathrm{Eq} \mathrm{X)}$	(Con Eq Top)
$E \vdash X:: ~ K$	Eト。
$E \vdash X \leftrightarrow X:: K$	$E \vdash$ Top \leftrightarrow Top : Ty

Constructor equivalence (2/3)

(Con Eq Object) (l_{i} distinct, $v_{i} \in\left\{\begin{array}{l}0,-+\} \\ ,\end{array}\right) \quad$ (Con Eq All)

$$
\frac{E \vdash B_{i} \leftrightarrow B_{i}{ }^{\prime} \quad \forall i \in 1 . . n}{E \vdash\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right] \leftrightarrow\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]}
$$

$$
\frac{E \vdash A \leftrightarrow A^{\prime}:: K \quad E, X<: A:: K \vdash B \leftrightarrow B^{\prime}}{E \vdash \forall(X<: A:: K) B \leftrightarrow \forall\left(X<: A^{\prime}:: K\right) B^{\prime}}
$$

(Con Eq Rec)
$\frac{E, X \vdash B \leftrightarrow B^{\prime}}{E \vdash \mu(X) B \leftrightarrow \mu(X) B^{\prime}}$

Constructor equivalence (3/3)

(Con Eq Abs)
$\frac{E, X:: K \vdash B \leftrightarrow B^{\prime}:: L}{E \vdash \lambda(X:: K) B \leftrightarrow \lambda(X:: K) B^{\prime}:: K \Rightarrow L}$
(Con Eval Beta)
$\frac{E, X:: K \vdash B\{X\}:: L \quad E \vdash A:: K}{E \vdash(\lambda(X:: K) B\{X\})(A) \leftrightarrow B\{A\}:: L}$
(Con Eq Appl)
$\frac{E \vdash B \leftrightarrow B^{\prime}:: K \Rightarrow L \quad E \vdash A \leftrightarrow A^{\prime}:: K}{E \vdash B(A) \leftrightarrow B^{\prime}\left(A^{\prime}\right):: L}$

Constructor inclusion (1/3)

$$
\begin{array}{lc}
\text { (Con Sub Refl) } & \text { (Con Sub Trans) } \\
\frac{E \vdash A \leftrightarrow B:: K}{E \vdash A<: B:: K} & \frac{E \vdash A<: B:: K}{E \vdash A<: C:: K} \\
& E \vdash B<: C:: K \\
\begin{array}{l}
\text { (Con Sub } X \text {) } \\
\quad E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash \varnothing
\end{array} & \\
\frac{\text { (Con Sub Top) }}{E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash X<: A:: K} & \frac{E \vdash A:: T y}{E \vdash A<: T o p:: T y}
\end{array}
$$

Constructor inclusion (2/3)

$$
\begin{aligned}
& \text { (Con Sub Object) } \quad\left(l_{i}\right. \text { distinct) } \\
& \frac{E \vdash v_{i} B_{i}<: v_{i}^{\prime} B_{i}^{\prime} \quad \forall i \in 1 . . n}{} \quad E \vdash B_{i} \quad \forall i \in n+1 . . n+m \\
& E \vdash\left[l_{i} v_{i}: B_{i}{ }^{i \epsilon 1 . . n+m}\right]<:\left[l_{i} v_{i}^{\prime}: B_{i}{ }^{\prime}{ }^{\prime \epsilon 1 . n}\right]
\end{aligned}
$$

(Con Sub All)

$$
\frac{E \vdash A^{\prime}<: A:: K \quad E, X<: A^{\prime}:: K \vdash B<: B^{\prime}}{E \vdash \forall(X<: A:: K) B<: \forall\left(X<: A^{\prime}:: K\right) B^{\prime}}
$$

(Con Sub Rec)

$$
\frac{E \vdash \mu(X) A \quad E \vdash \mu(Y) B \quad E, Y, X<: Y \vdash A<: B}{} \begin{array}{ll}
E \vdash \mu(X) A<: \mu(Y) B
\end{array}
$$

Constructor inclusion (3/3)

(Con Sub Abs)

$$
\frac{E, X:: K \vdash B<: B^{\prime}:: L}{E \vdash \lambda(X:: K) B<: \lambda(X:: K) B^{\prime}:: K \Rightarrow L}
$$

(Con Sub Appl)
$\frac{E \vdash B<: B^{\prime}:: K \Rightarrow L \quad E \vdash A:: K}{E \vdash B(A)<: B^{\prime}(A):: L}$
(Con Sub Invariant) (Con Sub Covariant) (Con Sub Contravariant)
$\frac{E \vdash B}{E \vdash{ }^{\circ} B<:{ }^{\circ} B} \quad \frac{E \vdash B<: B^{\prime} \quad v \in\left\{{ }^{\circ},^{+}\right\}}{E \vdash v B<:^{+} B^{\prime}} \quad \frac{E \vdash B^{\prime}<: B \quad v \in\left\{{ }^{\circ},-\right\}}{E \vdash v B<:^{-} B^{\prime}}$

Term typing (1/2)

(Val Subsumption)	
$E \vdash a: A \quad E \vdash A<: B$ $E \vdash a: B$	(Val x) $E^{\prime}, x: A, E^{\prime \prime} \vdash \diamond$

(Val Object)

$$
\frac{E_{,} x_{i}: A \vdash b_{i}: B_{i} \quad \forall i \in 1 . . n \quad E \vdash A \leftrightarrow\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]}{E \vdash\left[l_{i}=\zeta\left(x_{i}: A\right) b_{i}{ }^{i \in 1 . n}\right]: A}
$$

(Val Select)

$$
\frac{E \vdash a:\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right] \quad v_{j} \in\left\{\left\{_{,}^{0}\right\} \quad j \in 1 . . n\right.}{E \vdash a . l_{j}: B_{j}}
$$

Term typing (2/2)

(Val Update) (where $A \equiv\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . n}\right]$)
$\frac{E \vdash C<: A \quad E \vdash a: C \quad E, x: C \vdash b: B_{j} \quad v_{j} \in\left\{{ }^{0},-\right\} \quad j \in 1 . . n}{E \vdash a . l_{j} \leqslant \zeta(x: C) b: C}$
(Val Fun2::)
(Val Appl2::)
$\frac{E, X<: A:: K \vdash b: B}{E \vdash \lambda(X<: A:: K) b: \forall(X<: A:: K) B}$
$\frac{E \vdash b: \forall(X<: A:: K) B\{X\} \quad E \vdash A^{\prime}<: A:: K}{E \vdash b\left(A^{\prime}\right): B\left\{A^{\prime}\right\}}$
(Val Fold)
$\frac{E \vdash b: B \llbracket A\} \quad E \vdash A \leftrightarrow \mu(X) B\{X\}}{E \vdash f o l d(A, b): A}$
(Val Unfold) (where $A \equiv \mu(X) B\{X\})$
$\frac{E \vdash a: A}{E \vdash \operatorname{unfold}(a): B\{A\}}$

General Self types

- so far treatment of Self types was restricted to covariant occurences only in order to keep subtyping and subsumption working smoothly
- we may want to give up certain subtyping properties in exchange for a treatment of general Self types (without the covariance restriction)
- it naturally involves higher-order constructions

Binary-Tree Objects

- generalization of example with numerals (which can be seen as unary trees)
- two distinct successor functions

Object-oriented binary trees

```
Bin \triangleq\mu(X)[isLeaf:Bool,lft:X,rht:X, consLft:X }->\mathrm{ X, consRht:X }->\mathrm{ X]
UBin \triangleq [isLeaf:Bool,lft:Bin,rht:Bin,consLft:Bin }->\mathrm{ Bin, consRht:Bin }->\mathrm{ Bin]
leaf:Bin \triangleq fold(Bin,
    [isLeaf = true,
    lft = \varsigma(self:UBin) self.lft,
    rht = \zeta(self:UBin) self.rht,
    consLft = \varsigma(self:UBin)}\lambda(lft:Bin
        fold(Bin,((self.isLeaf:= false).lft := lft).rht := fold(Bin, self )),
    consRht = \varsigma(self:UBin) \lambda(rht:Bin)
        fold(Bin,((self.isLeaf:= false).lft := fold(Bin, self )).rht := rht)]
```

- we write $a . l:=b$ for $a . l \Leftarrow \varsigma(x: A) b$ when $x \notin F V(b)$
- tree with two leaves and joining root: unfold(leaf).consLft(leaf) : Bin

Binary-Tree Classes

We wish to define a class type BinClass, and a class binClass of a type BinClass that generates trees of type Bin, which methods can be inherited.

An inheriting class could, for example, generate trees with nodes containing natural numbers. Such tree would have type:

$$
\text { NatBin } \triangleq \mu(X)[n: N a t, \text { isLeaf:Bool, lft: } X, \text { rht }: X, \text { consLft: } X \rightarrow X, \text { consRht:X } \rightarrow X]
$$

Note that NatBin <: Bin cannot hold, but we still aim to reuse, for example, the consLft binary method.

Notation

We introduce following notation in order to transform the type Bin into a type operator BinOp .

- $O p$ is the kind of simple type operators; it stands for $T y \Rightarrow T y$
- $A<: B$ means that A is a suboperator of B; it stands for $A<: B:: O p$
- A^{*} is the fixpoint of the operator A; it stands for the type $\mu(X) A(X)$ where $A:: O p$

Object-oriented binary-tree operator

```
BinOp :: Op \triangleq
    \lambda(X)[isLeaf:Bool,lft:X,rht:X, consLft:X }->\textrm{X},\mathrm{ consRht:X }->X
Bin :: Ty\triangleq BinOp*
UBin::Ty\triangleq BinOp(Bin)
```

- the operator BinOp is the object protocol of Bin
- the type Bin can be recovered from BinOp by taking a fixpoint
- the type UBin is the unfolding of Bin obtained by applying BinOp to Bin

Object-oriented binary-tree class type

$$
\begin{aligned}
& \text { BinClass 』 } \\
& {\left[\text { new } w^{+}:\right. \text {Bin, }} \\
& \text { isLeaff: }: \forall(X<: \text { BinOp }) X^{\star} \rightarrow \text { Bool, } \\
& \text { lft }^{+}, \text {rht }^{+}: \forall(X<: \text { BinOp }) X^{\star} \rightarrow X^{\star}, \\
& \text { consLft } \left.t^{+}, \text {consRht }: \forall(X<: \text { BinOp }) X^{\star} \rightarrow X^{*} \rightarrow X^{\star}\right]
\end{aligned}
$$

- based on notion of parametric pre-methods
- types of pre-methods are quantified over the suboperators of BinOp instead of subtypes of Bin
- fixpoints introduced where appropriate to collapse operators down to types
- use of ${ }^{+}$guarantees that classes cannot be accidentally modified (although it's not necessary for the typing of classes)

Object-oriented binary-tree class

```
binClass:BinClass \triangleq [new = \varsigma(z:BinClass) fold(Bin,
    [isLeaf = \varsigma(s:UBin) z.isLeaf(BinOp)(fold(Bin, s)),
    lft = \varsigma(s:UBin) z.lft(BinOp)(fold(Bin, s)),
    rht = \varsigma(s:UBin) z.rht(BinOp)(fold(Bin,s)),
    consLft = \varsigma(s:UBin) z.consLft(BinOp)(fold(Bin, s)),
    consRht = ¢(s:UBin) z.consRht(BinOp)(fold(Bin,s))]),
    isLeaf = \lambda(X<:BinOp) \lambda(self: }\mp@subsup{X}{}{*})\mathrm{ true,
    lft = \lambda(X<:BinOp) \lambda(self:X*) unfold(self ).lft,
    rht = \lambda(X<:BinOp) \lambda(self:\mp@subsup{X}{}{*}) unfold(self ).rht,
    consLft = \lambda(X<:BinOp) \lambda(rht:\mp@subsup{X}{}{*})\lambda(lft:\mp@subsup{X}{}{*})
    fold(X*, ((unfold(rht).isLeaf:= false).lft := lft).rht := rht),
    consRht = \lambda(X<:BinOp) \lambda(lft:\mp@subsup{X}{}{*})}\lambda(rht:\mp@subsup{X}{}{*}
        fold(\mp@subsup{X}{}{*},((unfold(lft).isLeaf := false).lft := lft).rht := rht)]
```


Inheritance of binary pre-method

We can verify that inheritance of binary pre-method is possible. For example for the consLft of type $\forall(X<: \operatorname{BinOp}) X^{*} \rightarrow X^{*} \rightarrow X^{*}$, we have:

$$
\forall(X<: \mathrm{BinOp}) X^{*} \rightarrow X^{*} \rightarrow X^{*}<: \forall\left(X<: \mathrm{BinOp}^{\prime}\right) X^{*} \rightarrow X^{*} \rightarrow X^{*}
$$

for any $\mathrm{BinOp}^{\prime}<: \mathrm{BinOp}$
A suboperator of BinOp is for example:
NatBinOp $\equiv \lambda(X)[n:$ Nat, isLeaf : Bool, Ift : X, rht $: X$, consLft $: X \rightarrow X$, consRht : $X \rightarrow X]$

Normal system

- our main purpose is to proove subject reduction theorem for $\mathbf{O b}_{\omega<: \mu}$
- unfortunately, direct proofs on derivations rarely work $\mathrm{Ob}_{\omega<: \mu}$, because the β rule (Con Eval Beta) introduces expressions of arbitrary shape
- we introduce a normal system which lacks that rule, but that is sound and complete with respect to $\mathbf{O b}_{\omega<: \mu}$ over normal forms at the constructor level

Least upper bounds

- $A^{n f}$ is notion of constructor A in normal form
- lub $b_{E}(A)$ is notion of least upper bound of a constructor A in environment E, defined only for terms of the form $X\left(A_{1}\right) \ldots\left(A_{n}\right)$, for $n \geqslant 0$
- if the immediate bound of X in E is B, then $l u b_{E}\left(X\left(A_{1}\right) \ldots\left(A_{n}\right)\right)=B\left(A_{1}\right) \ldots\left(A_{n}\right)$

Least upper bounds and normal forms

```
lub }\mp@subsup{E}{E,X<:A,E}{
lu\mp@subsup{b}{E}{}(B(A))\triangleq lub
lu\mp@subsup{b}{E}{}(A) undefined otherwise
X nf}\triangleq
Topnf \triangleq Top
[livil:Bi}\mp@subsup{|}{i}{i\in1..n}\mp@subsup{]}{}{nf}\triangleq[\mp@subsup{l}{i}{\prime}\mp@subsup{v}{i}{}:\mp@subsup{B}{i}{nfi\in1..n}
(}\forall(X<:A::K)B\mp@subsup{)}{}{nf}\triangleq\forall(X<:A⿱\mp@code{Af::K)\mp@subsup{B}{}{nf}
(\mu(X)A)}\mp@subsup{)}{}{nf}\triangleq\mu(X)\mp@subsup{A}{}{nf
(\lambda(X::K)B\mp@subsup{)}{}{nf}\triangleq\lambda(X::K)\mp@subsup{B}{}{nf}
(B(A))\mp@subsup{)}{}{nf}\triangleq if B}\mp@subsup{B}{}{nf}\equiv\lambda(X::K)C{X} for some X,K,C, then (C{A&)\mp@subsup{)}{}{nf}\mathrm{ else }\mp@subsup{B}{}{nf}(\mp@subsup{A}{}{nf}
\phi
(E,X<:A::K)nf \triangleq E En, X<:A A
(E,x:A)nf}\triangleq E nf,x:A 的
```


Judgments for the normal system

$$
\begin{aligned}
& E \vdash \diamond \\
& E \vdash K \text { kind } \\
& E \vdash A:: K \\
& E \vdash^{n} A<: B:: K \\
& E \vdash^{n} v A<: v^{\prime} B
\end{aligned}
$$

E is an environment

K is a kind
constructor A has kind K
A is a subconstructor of B, both of kind K
A is a subtype of B according to variances v and v^{\prime}

- judgments $E \vdash A<: B:: K$ and $E \vdash v A<: v^{\prime} B$ of $\mathbf{O b}_{\omega<: \mu}$ replaced with $E \vdash{ }^{n} A<: B:: K$ and $E \vdash^{n} v A<: v^{\prime} B$
- judgment $E \vdash A \leftrightarrow B:: K$ is dropped to avoid problems caused by β-equivalence
- remaining judgments unchanged

Normal constructor inclusion (1/2)

(NCon Sub Refl)

$\frac{E \vdash A:: K}{E \vdash}$| n $A<: A:: K$ |
| :--- |

(NCon Sub Trans)

$$
\frac{E \vdash^{\mathrm{n}} A<: B:: K \quad E \vdash^{\mathrm{n}} B<: C:: K}{E \vdash^{\mathrm{n}} A<: C:: K}
$$

(NCon Sub X)
(NCon Sub Top)

$$
\frac{E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash^{n} A^{n f}<: B:: K}{E^{\prime}, X<: A:: K, E^{\prime \prime} \vdash^{n} X<: B:: K}
$$

$$
\frac{E \vdash A:: T y}{E \vdash \vdash^{\mathrm{n}} A<: T o p:: T y}
$$

(NCon Sub Abs)

$$
\frac{E, X:: K \vdash^{\mathrm{n}} B<: B^{\prime}:: L}{E \vdash^{\mathrm{n}} \lambda(X:: K) B<: \lambda(X:: K) B^{\prime}:: K \Rightarrow L}
$$

$$
\text { (NCon Sub Appl) (when } l u b_{E}(B(A)) \text { is defined) }
$$

$$
\frac{E \vdash B:: K \Rightarrow L \quad E \vdash A:: K \quad E \vdash^{n}\left(l u b_{E}(B(A))\right)^{n f}<: C:: L}{E \vdash^{n} B(A)<: C:: L}
$$

Normal constructor inclusion (2/2)

(NCon Sub Object) (l_{i} distinct)

$$
\frac{E \vdash^{n} v_{i} B_{i}<: v_{i}^{\prime} B_{i}^{\prime} \quad \forall i \epsilon 1 . . n \quad E \vdash B_{i} \quad \forall i \epsilon n+1 . . n+m}{E \vdash^{\mathrm{n}}\left[l_{i} v_{i}: B_{i}^{i \epsilon 1 . . n+m}\right]<:\left[l_{i} v_{i}^{\prime}: B_{i}^{\prime}{ }^{i \epsilon 1 . . n}\right]}
$$

(NCon Sub All)

$$
\frac{E \vdash^{n} A^{\prime}<: A:: K \quad E, X<: A^{\prime}:: K \vdash^{\mathrm{n}} B<: B^{\prime}}{E \vdash^{\mathrm{n}} \forall(X<: A:: K) B<: \forall\left(X<: A^{\prime}:: K\right) B^{\prime}}
$$

(NCon Sub Rec)
$\frac{E \vdash \mu(X) A \quad E \vdash \mu(Y) B \quad E, Y, X<: Y \vdash^{\mathrm{n}} A<: B}{E \vdash^{\mathrm{n}} \mu(X) A<: \mu(Y) B}$

(NCon Sub Invariant)	(NCon Sub Covariant)	(NCon Sub Contravariant)
$E \vdash B$	$E \vdash^{\mathrm{n}} B<B^{\prime} \quad v \in\left\{{ }^{\mathrm{o}},{ }^{+}\right\}$	$E \vdash^{\mathrm{n}} B^{\prime}<: B \quad v \in\left\{{ }^{\circ},-\right\}$
$E \vdash^{\text {n }}{ }^{\text {o }} B<{ }^{\text {o }} B$	$E \vdash^{\mathrm{n}}$ v $B<\mathrm{:}^{+} B^{\prime}$	$E \vdash^{\mathrm{n}}$ v $B<\mathrm{i}^{-} B^{\prime}$

Basic properties (1/3)

Lemma 20.5-2 (Equivalence to normal form)

 If $E \vdash A:: K$, then $E \vdash A \leftrightarrow A^{n f}:: K$. \squareLemma 20.5-3 (Substitution for unbounded type variables) If $E, X:: K, E^{\prime}\{X\} \vdash^{n} \mathfrak{I}\{X\}$ and $E \vdash A:: K$, then $E,\left(E^{\prime}\{A \nmid)^{n f} \vdash^{n}\left(\mathfrak{I}\{A \nmid)^{n f}\right.\right.$, where $\mathfrak{J} \equiv B<: B^{\prime}:: K$ or $\mathfrak{I} \equiv v B<: v^{\prime} B^{\prime}$.

Lemma 20.5-4 (Normal inclusion of operator application) If $E \vdash^{\mathrm{n}} A<: B:: L \Rightarrow K$ and $E \vdash C:: L$, then $E \vdash^{\mathrm{n}}(A C)^{n f}<:(B C)^{n f}:: K$.

Basic properties (2/3)

Lemma 20.5-5 (Soundness and completeness of normal system)

If $E \vdash^{\mathrm{n}} A<: B:: K$, then $E \vdash A<: B:: K$.
If $E \vdash^{\mathrm{n}} v B \ll v^{\prime} B^{\prime}$, then $E \vdash v B<: v^{\prime} B^{\prime}$.
If $E \vdash A<: B:: K$, then $E^{n f} \vdash^{n} A^{n f}<: B^{n f}:: K$.
If $E \vdash v B<: v^{\prime} B^{\prime}$, then $E^{n f} \vdash^{n} v B^{n f}<: v^{\prime} B^{m f}$.

Basic properties (3/3)

Lemma 20.5-6 (Structural subtyping)

(1) If $E \vdash T o p<: C$, then $E \vdash C \leftrightarrow T o p$.
(2) Let $E \vdash \forall(X<: D:: L) C<: \forall\left(X<: D^{\prime}:: L^{\prime}\right) C^{\prime}$. Then $L \equiv L^{\prime}, E \vdash D^{\prime}<: D:: L$, and $E, X<: D^{\prime}:: L \vdash C<: C^{\prime}$.
(3) Let $E \vdash\left[l_{i} v_{i}: B_{i}^{i \epsilon l}\right]<:\left[l_{i} v_{i}^{\prime}: B_{i}^{\prime i \epsilon}\right]$.
(1) $J \subseteq I$.
(2) If $v_{j}^{\prime} \in\left\{{ }^{0},+\right\}$ for some $j \in J$, then $v_{j} \in\left\{{ }^{0},+\right\}$ and $E \vdash B_{j}<: B_{j}{ }^{\prime}$.
(3) If $v_{j}{ }^{\prime} \in\left\{{ }^{0},-\right\}$ for some $j \in J$, then $v_{j} \in\left\{{ }^{0},-\right\}$ and $E \vdash B_{j}{ }^{\prime}<: B_{j}$.
(4) Let $E \vdash \mu(X) B\{X\}<: \mu\left(X^{\prime}\right) B^{\prime}\left\{X^{\prime}\right\}$.

Then either $E, X \vdash B\{X\} \leftrightarrow B^{\prime}\{X\}$, or $E, X^{\prime}, X<: X^{\prime} \vdash B\{X\}<: B^{\prime}\left\{X^{\prime}\right\}$.

Subject reduction theorem

Theorem 20.6-1 (Subject reduction)
If $\varnothing \vdash a: A$ and $\vdash a \rightsquigarrow v$, then $\phi \vdash v: A$.
Proof
By induction on the derivation of $\vdash a \rightsquigarrow v$.

Questions?

