Higher-Order Calculus

Piotr Krzemiński

Wrocław, 4th June 2014

Piotr Krzemiński Higher-Order Calculus

イロト イヨト イヨト イヨト

Syntax Operational Semantics Typing

Introduction

- ${\ensuremath{\, \bullet }}$ we start from $Ob_{1<:}$
- structure rule for method update and variance annotations
- $\bullet\,$ higher-order subtyping, based on Girard's ${\bf F}_\omega$
- finally we obtain $\mathbf{Ob}_{\omega <: \mu}$

(a)

Syntax Operational Semantics Typing

$\lambda(X) \forall (Y <: X) Y$

This is example of so-called *type operator*. It's mapping from type X to the type $\forall (Y \leq X)Y$.

・ロト ・聞ト ・ヨト ・ヨト

Syntax Operational Semantics Typing

Kinds

A structure of *kinds* is introduced to classify types and operators (collectively called *constructors*).

- the kind of all types is called Ty
- an operator from types to types has kind $Ty \Rightarrow Ty$
- higher-order operators can be expressed as well, such as $(Ty \Rightarrow Ty) \Rightarrow Ty$
- in general, kind $K \Rightarrow L$ is the kind of operators mapping kind K to kind L
- we write A :: K to say that constructor A has kind K

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Syntax Operational Semantics Typing

Higher-order subtyping

Subtype relation is generalized to a higher-order: the *subconstructor* (or simply, *inclusion*) relation.

- on types, it reduces to ordinary subtyping
- on operators it is defined as pointwise inclusion:
 - B <: B' holds at kind $K \Rightarrow L$ if for all A of kind K we have B(A) <: B'(A) at kind L
- fully we write A <: B :: K meaning the constructors A and B are both of kind K and A is included in B
- for example, A <: Top is written in full as A <: Top :: Ty

イロト イポト イヨト イヨト

Syntax Operational Semantics Typing

Syntax

<i>K,L</i> ::=	kinds
Ту	types
$K \Rightarrow L$	operators from K to L
<i>A</i> , <i>B</i> ::=	constructors
X	constructor variable
Тор	the biggest constructor at kind <i>Ty</i>
$[l_i \upsilon_i:B_i \stackrel{i \in 1n}{=}]$	object type (l_i distinct, $v_i \in \{\circ, -, +\}$)
$\forall (X <: A :: K) B$	bounded universal type
μ(X)A	recursive type
λ(X::K)B	operator
B(A)	operator application
<i>a,b</i> ::=	terms
x	variable
$[l = \varsigma(x_i:A_i)b_i^{i \in 1n}]$	object formation (l_i distinct)
a.l	method invocation
$a.l \neq \varsigma(x:A)b$	method update
$\lambda(X <: A::K)b$	constructor abstraction
<i>b</i> (<i>A</i>)	constructor application
fold(A,a)	recursive fold
unfold(a)	recursive unfold

- X <: A :: K is general form of bounds for constructors
- bounded universal types and constructor abstractions
- operators have restricted bounds (of the form X :: K) to simplify technical treatment of higher-order features
- we do not include primitive existential quantifiers nor function types

Syntax Operational Semantics Typing

Our initial example of an operator written in full as:

$$\lambda(X :: Ty) \forall (Y <: X :: Ty) Y :: Ty \Rightarrow Ty$$

Piotr Krzemiński Higher-Order Calculus

イロト イヨト イヨト イヨト

Syntax Operational Semantics Typing

Results

Results are described by the following grammar.

$$v ::= [l_i = \varsigma(x_i:A_i)b_i^{i \in 1..n}]$$

$$\lambda(X <:A::K)b$$

$$fold(A,v)$$

results

object result constructor abstraction result recursion result

イロト イヨト イヨト イヨト

Syntax Operational Semantics Typing

Semantics (1/2)

(Red Object) (where $v \equiv [l_i = \varsigma(x_i:A_i)b_i^{i \in 1..n}]$)

 $\vdash v \leadsto v$

(Red Update) $+ a \rightsquigarrow [l_i = \zeta(x_i:A_i)b_i^{i \in 1..n}] \quad j \in 1..n$ $+ a.l_j \notin \zeta(x:A)b \rightsquigarrow [l_j = \zeta(x:A_j)b, \ l_i = \zeta(x_i:A_i)b_i^{i \in (1..n)-[j]}]$

イロト イポト イヨト イヨト

э.

Syntax Operational Semantics Typing

Semantics (2/2)

(Red Fun2::) (where $v \equiv \lambda(X <: A::K)b$)

 $\vdash v \leadsto v$

 $\frac{(\text{Red Appl2::})}{\vdash b \rightsquigarrow \lambda(X <: A::K)c\{X\}} \vdash c\{A'\} \rightsquigarrow v}{\vdash b(A') \rightsquigarrow v}$

(Red Fold) $\begin{array}{c} \vdash b \rightsquigarrow v \\
\hline \vdash fold(A,b) \rightsquigarrow fold(A,v) \\
(Red Unfold) \\
\vdash a \rightsquigarrow fold(A,v) \\
\hline \vdash unfold(a) \rightsquigarrow v \\
\end{array}$

イロト イポト イヨト イヨト

э.

Piotr Krzemiński Higher-Order Calculus

Syntax Operational Semantics Typing

Judgments

The type rules of $\mathbf{Ob}_{\omega <: \mu}$ are formulated in terms of following judgments.

E⊢◇	<i>E</i> is an environment
$E \vdash K$ kind	K is a kind
$E \vdash A :: K$	constructor A has kind K
$E \vdash A \leftrightarrow B :: K$	A and B are equivalent constructors of kind K
$E \vdash A <: B :: K$	A is a subconstructor of B , both of kind K
$E \vdash \upsilon A <: \upsilon' B$	A is a subtype of B according to variances v and v'
$E \vdash a : A$	<i>a</i> is a value of type <i>A</i>

- E ⊢ A ↔ B :: K needed because presence of operators entails computation at constructor level
- for example theory implies that $(\lambda(X :: Ty) \forall (Y <: X :: Ty)Y)(Top)$ equals $\forall (Y <: Top :: Ty)Y$
- there is no judgment for equivalence of terms

イロト イポト イヨト イヨト

Syntax Operational Semantics Typing

Notation

Several abbreviations are extensively used to omit some bounds and some kinds.

$\lceil Ty \rceil$	≜	Тор
$\left\lceil K \Rightarrow L \right\rceil$	≜	$\lambda(X::K)[L]$
X :: K	≜	$X <: \lceil K \rceil :: K$
X <: A	≜	X <: A :: Ty
Χ	≜	X <: Top :: Ty
$E \vdash A$	≜	$E \vdash A :: Ty$
$E \vdash A \leftrightarrow B$	≜	$E \vdash A \leftrightarrow B :: Ty$
$E \vdash A <: B$	≜	$E \vdash A <: B :: Ty$

(in environments and some binders) (in environments and some binders) (in environments and some binders)

イロト イポト イヨト イヨト

• [K] denotes maximum constructor at kind K

Syntax Operational Semantics Typing

Environment & Kind formation

(Env ø)	(Env X<:)		(Env x)	
	$E \vdash A :: K$	X∉dom(E)	$E \vdash A$	x∉dom(E)
ø⊢◇	E, X<:/	4:: <i>K</i> ⊢	<i>E,</i> :	$x:A \vdash \diamond$

(Kind Ty)	(Kind ⇒)	
$E \vdash \diamond$	$E \vdash K$ kind	$E \vdash L kind$
$E \vdash Ty kind$	$E \vdash K =$	⇒L kind

Piotr Krzemiński Higher-Order Calculus

・ロト ・聞ト ・ヨト ・ヨト

э.

 $\begin{array}{l} \mbox{Higher-Order Calculus} \\ \mbox{Binary methods} \\ \mbox{Properties of } \mbox{Ob}_{\omega <: \mu} \end{array}$

Syntax Operational Semantics Typing

Constructor formation

(Con X)	(Con Top)
$E', X <: A:: K, E'' \vdash \diamond$	$E \vdash \diamond$
$E', X \lt: A ::: K, E'' \vdash X ::: K$	$\overline{E \vdash Top :: Ty}$

(Con Object) $(l_i \text{ distinct, } \upsilon_i \in \{\circ, -, +\})$	(Con All)	(Con Rec)
$E \vdash B_i \forall i \in 1n$	$E, X <: A :: K \vdash B$	$E, X \vdash A$
$E \vdash [l_i \upsilon_i : B_i^{i \in 1n}]$	$E \vdash \forall (X <: A :: K) B$	$E \vdash \mu(X)A$

(Con Abs)	(Con Appl)	
$E, X :: K \vdash B :: L$	$E \vdash B :: K \Longrightarrow L$	$E \vdash A :: K$
$E \vdash \lambda(X::K)B :: K \Longrightarrow L$	$E \vdash B(A$.) :: L

・ロト ・四ト ・モト ・モト

Syntax Operational Semantics Typing

Constructor equivalence (1/3)

(Con Eq Symm)	(Con Eq Trans)	
$E \vdash A \nleftrightarrow B :: K$	$E \vdash A \leftrightarrow B :: K$	$E \vdash B \leftrightarrow C :: K$
$E \vdash B \leftrightarrow A :: K$	$E \vdash A <$	→ C :: K
(Con Eq X)	(Con Eq Top)	
$E \vdash X :: K$	$E \vdash \diamond$	
$E \vdash X \leftrightarrow X :: K$	$E \vdash Top \leftrightarrow Top ::$	Ty

Piotr Krzemiński Higher-Order Calculus

・ロト ・聞ト ・ヨト ・ヨト

Syntax Operational Semantics Typing

Constructor equivalence (2/3)

(Con Eq Object)	$(l_i \text{ distinct, } v_i \in \{{}^{\circ}, {}^{-}, {}^+\})$
$E \vdash B_i \leftrightarrow B_i$	′ ∀i∈1n

 $E \vdash [l_i \upsilon_i : B_i^{i \in 1..n}] \Leftrightarrow [l_i \upsilon_i : B_i'^{i \in 1..n}]$

(Con Eq Rec) E, $X \vdash B \leftrightarrow B'$

 $E \vdash \mu(X)B \nleftrightarrow \mu(X)B'$

(Con Eq All) $E \vdash A \leftrightarrow A' :: K \qquad E, X <: A :: K \vdash B \leftrightarrow B'$ $E \vdash \forall (X <: A :: K)B \leftrightarrow \forall (X <: A' :: K)B'$

イロト イポト イヨト イヨト

Syntax Operational Semantics Typing

Constructor equivalence (3/3)

(Con Eq Abs)	(Con Eq Appl)	
$E, X :: K \vdash B \leftrightarrow B' :: L$	$E \vdash B \nleftrightarrow B' :: K \Longrightarrow L$	$E \vdash A \leftrightarrow A' :: K$
$E \vdash \lambda(X::K)B \nleftrightarrow \lambda(X::K)B'::K \Longrightarrow L$	$E \vdash B(A) \Leftrightarrow$	B'(A') :: L

(Con Eval Beta)

 $E, X::K \vdash B\{X\} :: L \qquad E \vdash A :: K$

イロト イポト イヨト イヨト

 $\begin{array}{l} \text{Higher-Order Calculus} \\ \text{Binary methods} \\ \text{Properties of } \mathbf{Ob}_{\omega <: \mu} \end{array}$

Syntax Operational Semantics Typing

Constructor inclusion (1/3)

(Con Sub Refl)	(Con Sub Trans	s)
$E \vdash A \nleftrightarrow B :: K$	$E \vdash A <: B :: K$	$C = E \vdash B <: C :: K$
$E \vdash A <: B :: K$	$E \vdash A$	A <: C :: K
(Con Sub X)	(Con Sub Top)
$E', X <: A :: K, E'' \vdash \diamond$		$E \vdash A :: Ty$
<i>E′, X<:A::K, E″</i> ⊢	X <: A :: K	$E \vdash A <: Top :: Ty$

Piotr Krzemiński Higher-Order Calculus

・ロト ・御ト ・ヨト ・ヨト

æ

Syntax Operational Semantics Typing

Constructor inclusion (2/3)

 $\frac{(\text{Con Sub Object)} \quad (l_i \text{ distinct})}{E \vdash \upsilon_i B_i <: \upsilon_i' B_i' \quad \forall i \in 1..n \quad E \vdash B_i \quad \forall i \in n+1..n+m}{E \vdash [l_i \upsilon_i: B_i \quad ^{i \in 1..n+m}] <: [l_i \upsilon_i': B_i' \quad ^{i \in 1..n}]}$

(Con Sub All) $E \vdash A' <: A :: K \qquad E, X <: A' :: K \vdash B <: B'$

 $E \vdash \forall (X <: A ::: K) B <: \forall (X <: A' ::: K) B'$

(Con Sub Rec) $\frac{E \vdash \mu(X)A \quad E \vdash \mu(Y)B \quad E, Y, X \lt: Y \vdash A \lt: B}{E \vdash \mu(X)A \lt: \mu(Y)B}$

3

Syntax Operational Semantics Typing

Constructor inclusion (3/3)

(Con Sub Abs)	(Con Sub Appl)		
$E, X::K \vdash B <: B':: L$	$E \vdash B <: B' :: K \Longrightarrow L$	$E \vdash A :: K$	
$E \vdash \lambda(X::K)B <: \lambda(X::K)B' :: K \Longrightarrow L$	$E \vdash B(A) <: B'(A) :: L$		

(Con Sub Invariant)	(Con Sub Covariant)		(Con Sub Contravariant)		
$E \vdash B$	$E \vdash B <: B'$	υ∈{°,+}	$E \vdash B' <: B$	υ∈{°,-}	
$E \vdash {}^{\circ}B <: {}^{\circ}B$	$E \vdash \upsilon B <: {}^+B'$		$E \vdash \upsilon B <: \overline{B'}$		

・ロト ・御ト ・ヨト ・ヨト

æ

Syntax Operational Semantics **Typing**

Term typing (1/2)

(Val Subsumption)	(Val x)
$E \vdash a : A E \vdash A <:$	$B \qquad E', x:A, E'' \vdash \diamond$
$E \vdash a : B$	$\overline{E', x:A, E'' \vdash x:A}$
(Val Object)	
$E, x_i:A \vdash b_i: B_i \qquad \forall i \in$	$1n \qquad E \vdash A \nleftrightarrow [l_i \upsilon_i: B_i^{i \in 1n}]$
$E \vdash [l_i = \varsigma]$	$(x_i:A)b_i^{i\in 1n}]:A$
(Val Select)	
$E \vdash a : [l_i \upsilon_i : B_i^{i \in 1n}]$	$\upsilon_j \in \{\circ, +\}$ $j \in 1n$
$E \vdash a.l_j$	B_j

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

æ

Syntax Operational Semantics Typing

Term typing (2/2)

(Val Update) (where $A \equiv [l_i \upsilon_i: B_i^{i \in 1}]$	ⁿ])			
$E \vdash C <: A \qquad E \vdash a : C \qquad E, x:C \vdash$	$b: B_j \upsilon_j \in \{\circ, -\} j \in 1n$			
$E \vdash a.l_{j} \in \varsigma(x:C)$)b : C			
(Val Fun2::)	(Val Appl2::)			
$E, X <: A :: K \vdash b : B$	$E \vdash b : \forall (X <: A :: K)B\{X\} \qquad E \vdash A' <: A :$			
$E \vdash \lambda(X <: A :: K)b : \forall (X <: A :: K)B$	$E \vdash b(A') : B\{\!\{A'\}\!\}$			
(Val Fold)	(Val Unfold) (where $A \equiv \mu(X)B\{X\}$)			
$E \vdash b : B\{\!\!\{A\}\!\!\} \qquad E \vdash A \nleftrightarrow \mu(X)B\{X\}$	$E \vdash a : A$			
$E \vdash fold(A,b): A$	$E \vdash unfold(a) : B\{A\}$			

・ロト ・四ト ・ヨト ・ヨト

æ.

General Self types Binary-Tree Objects Binary-Tree Classes

General Self types

- so far treatment of Self types was restricted to covariant occurences only in order to keep subtyping and subsumption working smoothly
- we may want to give up certain subtyping properties in exchange for a treatment of general Self types (without the covariance restriction)
- it naturally involves higher-order constructions

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Self types Binary-Tree Objects Binary-Tree Classes

Binary-Tree Objects

- generalization of example with numerals (which can be seen as unary trees)
- two distinct successor functions

(a)

General Self types Binary-Tree Objects Binary-Tree Classes

Object-oriented binary trees

 $\mu(X)$ [isLeaf:Bool, lft:X, rht:X, consLft:X \rightarrow X, consRht:X \rightarrow X] Bin ≜ $UBin \triangleq [isLeaf:Bool, lft:Bin, rht:Bin, consLft:Bin \rightarrow Bin, consRht:Bin \rightarrow Bin]$ $leaf: Bin \triangleq fold(Bin,$ [isLeaf = true, $lft = \varsigma(self:UBin) self.lft,$ $rht = \varsigma(self:UBin) self.rht,$ $consLft = \zeta(self:UBin) \lambda(lft:Bin)$ fold(Bin, ((self.isLeaf := false).lft := lft).rht := fold(Bin, self)), $consRht = \zeta(self:UBin) \lambda(rht:Bin)$ fold(Bin, ((self.isLeaf := false).lft := fold(Bin, self)).rht := rht)]

• we write a.l := b for $a.l \leftarrow \varsigma(x : A)b$ when $x \notin FV(b)$

• tree with two leaves and joining root: *unfold(leaf).consLft(leaf)* : *Bin*

Higher-Order Calculus
Binary methodsGeneral
BinaryProperties of $Ob_{\omega <: \mu}$ Binary

General Self types Binary-Tree Objects Binary-Tree Classes

Binary-Tree Classes

We wish to define a class type *BinClass*, and a class *binClass* of a type *BinClass* that generates trees of type Bin, which methods can be inherited.

An inheriting class could, for example, generate trees with nodes containing natural numbers. Such tree would have type:

NatBin $\triangleq \mu(X)[n:Nat, isLeaf:Bool, lft:X, rht:X, consLft:X \rightarrow X, consRht:X \rightarrow X]$

Note that NatBin <: Bin cannot hold, but we still aim to reuse, for example, the consLft binary method.

(a)

Higher-Order Calculus
Binary methodsGeneral
Binary-T
Binary-TProperties of $Ob_{\omega <: \mu}$ Binary-T

General Self types Binary-Tree Objects Binary-Tree Classes

Notation

We introduce following notation in order to transform the type *Bin* into a type operator *BinOp*.

- *Op* is the kind of simple type operators; it stands for $Ty \Rightarrow Ty$
- $A \prec : B$ means that A is a suboperator of B; it stands for $A \prec : B :: Op$
- A^* is the fixpoint of the operator A; it stands for the type $\mu(X)A(X)$ where A :: Op

(a)

General Self types Binary-Tree Objects Binary-Tree Classes

Object-oriented binary-tree operator

- the operator BinOp is the object protocol of Bin
- the type Bin can be recovered from BinOp by taking a fixpoint
- the type UBin is the unfolding of Bin obtained by applying BinOp to Bin

イロト イポト イヨト イヨト

Higher-Order Calculus
Binary methodsGen
Bina
Bina
Binary methodsProperties of $Ob_{\omega <: \mu}$ Bina
Bina

General Self types Binary-Tree Objects Binary-Tree Classes

Object-oriented binary-tree class type

 $\begin{array}{ll} BinClass & \triangleq \\ & [new^+:Bin, \\ & isLeaf^+:\forall (X <: BinOp) \ X^* \rightarrow Bool, \\ & lft^+, rht^+:\forall (X <: BinOp) \ X^* \rightarrow X^*, \\ & consLft^+, consRht^+:\forall (X <: BinOp) \ X^* \rightarrow X^* \rightarrow X^*] \end{array}$

- based on notion of parametric pre-methods
- types of pre-methods are quantified over the suboperators of *BinOp* instead of subtypes of *Bin*
- fixpoints introduced where appropriate to collapse operators down to types
- use of ⁺ guarantees that classes cannot be accidentally modified (although it's not necessary for the typing of classes)

General Self types Binary-Tree Objects Binary-Tree Classes

Object-oriented binary-tree class

 $binClass : BinClass \triangleq [new = \zeta(z:BinClass) fold(Bin,$ $[isLeaf = \zeta(s:UBin) z.isLeaf(BinOp)(fold(Bin, s)),$ $lft = \zeta(s:UBin) z.lft(BinOp)(fold(Bin, s)),$ rht = c(s:UBin) z.rht(BinOp)(fold(Bin, s)). $consLft = \varsigma(s:UBin) z.consLft(BinOp)(fold(Bin, s)),$ consRht = c(s:UBin) z.consRht(BinOp)(fold(Bin, s))]), $isLeaf = \lambda(X \prec :BinOp) \lambda(self:X^*) true.$ *lft* = λ (*X* \prec :*BinOp*) λ (*self*:*X*^{*}) *unfold*(*self*).*lft*, $rht = \lambda(X \prec : BinOp) \lambda(self:X^*) unfold(self).rht,$ $consLft = \lambda(X \prec : BinOp) \lambda(rht:X^*) \lambda(lft:X^*)$ $fold(X^*, ((unfold(rht).isLeaf := false).lft := lft).rht := rht),$ $consRht = \lambda(X \prec :BinOp) \lambda(lft:X^*) \lambda(rht:X^*)$ $fold(X^*, ((unfold(lft))) = false).lft := lft).rht := rht)$

- ロ ト - 4 母 ト - 4 母 ト - - - ヨ

General Self types Binary-Tree Objects Binary-Tree Classes

Inheritance of binary pre-method

We can verify that inheritance of binary pre-method is possible. For example for the *consLft* of type $\forall (X \leq : BinOp)X^* \rightarrow X^* \rightarrow X^*$, we have:

$$\forall (X \prec: BinOp) X^* \rightarrow X^* \rightarrow X^* \quad <: \quad \forall (X \prec: BinOp') X^* \rightarrow X^* \rightarrow X^*$$

for any *BinOp'* <: *BinOp*

A suboperator of *BinOp* is for example:

 $NatBinOp \equiv \lambda(X)[n : Nat, isLeaf : Bool, lft : X, rht : X, consLft : X \rightarrow X, consRht : X \rightarrow X]$

イロト イポト イヨト イヨト

Normal system Basic properties Subject reduction

Normal system

- our main purpose is to proove subject reduction theorem for $\mathbf{Ob}_{\omega<:\mu}$
- unfortunately, direct proofs on derivations rarely work i $Ob_{\omega <: \mu}$, because the β rule (Con Eval Beta) introduces expressions of arbitrary shape
- we introduce a *normal system* which lacks that rule, but that is sound and complete with respect to $Ob_{\omega <: \mu}$ over normal forms at the constructor level

(a)

Normal system Basic properties Subject reduction

Least upper bounds

- A^{nf} is notion of constructor A in normal form
- $lub_E(A)$ is notion of least upper bound of a constructor A in environment E, defined only for terms of the form $X(A_1) \dots (A_n)$, for $n \ge 0$
- if the immediate bound of X in E is B, then $lub_E(X(A_1)...(A_n)) = B(A_1)...(A_n)$

イロト イポト イヨト イヨト

3

Higher-Order Calculus Binary methods Properties of Ob_{w<:µ} Normal system Basic properties Subject reduction

Least upper bounds and normal forms

```
lub_{E,X \leq A,E'}(X) \triangleq A
lub_F(B(A)) \triangleq lub_F(B)(A)
lub_{F}(A) undefined otherwise
X^{nf} \triangleq X
Top^{nf} \triangleq Top
[l_{i}\upsilon_{i}:B_{i}^{i\in 1..n}]^{nf} \triangleq [l_{i}\upsilon_{i}:B_{i}^{nfi\in 1..n}]
(\forall (X \leq A:K)B)^{nf} \triangleq \forall (X \leq A^{nf}:K)B^{nf}
(\mu(X)A)^{nf} \triangleq \mu(X)A^{nf}
(\lambda(X::K)B)^{nf} \triangleq \lambda(X::K)B^{nf}
(B(A))^{nf} \triangleq \text{if } B^{nf} \equiv \lambda(X::K)C\{X\} \text{ for some } X.K.C. \text{ then } (C\{A\})^{nf} \text{ else } B^{nf}(A^{nf})
\phi^{nf} \triangleq \phi
(E, X <: A::K)^{nf} \triangleq E^{nf}, X <: A^{nf}::K
(E, x; A)^{nf} \triangleq E^{nf}, x; A^{nf}
                                                                                                            ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 シのの
```

Normal system Basic properties Subject reduction

Judgments for the normal system

$E \vdash \diamond$	E is an environment
$E \vdash K$ kind	K is a kind
$E \vdash A :: K$	constructor A has kind K
$E \vdash^n A <: B :: K$	A is a subconstructor of B, both of kind K
$E \vdash^{n} \upsilon A <: \upsilon' B$	A is a subtype of B according to variances v and v'

- judgments E ⊢ A <: B :: K and E ⊢ vA <: v'B of Ob_{ω<:µ} replaced with E ⊢ⁿ A <: B :: K and E ⊢ⁿ vA <: v'B
- judgment $E \vdash A \leftrightarrow B :: K$ is dropped to avoid problems caused by β -equivalence
- remaining judgments unchanged

イロト イポト イヨト イヨト

Normal system Basic properties Subject reduction

Normal constructor inclusion (1/2)

(NCon Sub Refl)	(NCon Sub Trans)		
$E \vdash A :: K$	$E \vdash^n A <: B ::$	$K \qquad E \vdash^n B <: C :: K$	
$E \vdash^{n} A <: A :: K$	$E \vdash^n A <: C :: K$		
(NCon Sub X)		(NCon Sub Top)	
$E', X {<:} A {::} K, E'' \vdash^r$	$A^{nf} <: B :: K$	$E \vdash A :: Ty$	
<i>E', X<:A::K, E″</i> ⊢	n X <: B :: K	$E \vdash^{n} A \prec: Top ::: Ty$	
(NCon Sub Abs)			
E, X::K ⊢ ⁿ E	B <: B' :: L		
$E \vdash^n \lambda(X::K)B <: \lambda$	$L(X::K)B'::K\Rightarrow L$		
(NCon Sub Appl)	(when <i>lub_E(B(A)</i>) is	s defined)	
$E \vdash B :: K \Longrightarrow L E$	$\vdash A :: K E \vdash^n$	$(lub_E(B(A)))^{nf} <: C :: l$	

 $E \vdash^{n} B(A) <: C :: L$

イロト イヨト イヨト イヨト

Normal system Basic properties Subject reduction

Normal constructor inclusion (2/2)

(NCon Sub Object) (l _i distinct)				
$E \vdash^n \upsilon_i B_i <: \upsilon_i' B$	i′ ∀i∈1n	$E \vdash B_i$	$\forall i \in n+1$.	<i>n+m</i>	
E ⊢ ⁿ [<i>l</i>	$w_i:B_i^{i\in 1n+m}]$	<: [<i>l_iv_i':B_i'</i>	<i>i</i> €1 <i>n</i>]		
(NCon Sub All)					
$E \vdash^{\mathbf{n}} A' <: A :: K$	E, X<:A'::.	$K \vdash^n B <:$	B′		
$E \vdash^n \forall (X <: A)$	$K)B <: \forall (X < $:A'::K)B'			
(NCon Sub Rec)					
$E \vdash \mu(X)A E \vdash$	-μ(Y)B Ε,	$Y, X <: Y \vdash$	ⁿ A <: ₿		
E ⊢	$n^n \mu(X)A <: \mu(X)$	Y)B			
(NCon Sub Invaria	ant) (NCon	Sub Covar	iant)	(NCon Sub Co	ntravariant)
$E \vdash B$	$E \vdash^{n} B$	<: B' v	€{ ^o ,⁺}	$E \vdash^n B' <: B$	υε{°,-}
$E \vdash^{n \circ} B <: \circ B$	E ⊢	$^{n} \upsilon B <: ^{+}$	B'	$E \vdash^n \upsilon B <$:: - B'

・ロト ・部ト ・モト ・モト

Higher-Order Calculus Binary methods Properties of Ob_{w<:µ} Normal system Basic properties Subject reduction

Basic properties (1/3)

Lemma 20.5-2 (Equivalence to normal form)

```
If E \vdash A :: K, then E \vdash A \leftrightarrow A^{nf} :: K.
```

Lemma 20.5-3 (Substitution for unbounded type variables)

If E, X::K, $E'{X} \vdash^{n} \Im{X}$ and $E \vdash A :: K$, then E, $(E'{A})^{nf} \vdash^{n} (\Im{A})^{nf}$, where $\Im \equiv B <: B' :: K$ or $\Im \equiv \upsilon B <: \upsilon' B'$.

Lemma 20.5-4 (Normal inclusion of operator application)

If $E \vdash^n A \lt: B :: L \Longrightarrow K$ and $E \vdash C :: L$, then $E \vdash^n (A C)^{nf} \lt: (B C)^{nf} :: K$.

イロト イポト イヨト イヨト

Higher-Order Calculus Binary methods Properties of Ob_{ω<:μ} Normal system Basic properties Subject reduction

Basic properties (2/3)

Lemma 20.5-5 (Soundness and completeness of normal system)

If $E \vdash^{n} A <: B :: K$, then $E \vdash A <: B :: K$. If $E \vdash^{n} \upsilon B <: \upsilon' B'$, then $E \vdash \upsilon B <: \upsilon' B'$. If $E \vdash A <: B :: K$, then $E^{nf} \vdash^{n} A^{nf} <: B^{nf} :: K$. If $E \vdash \upsilon B <: \upsilon' B'$, then $E^{nf} \vdash^{n} \upsilon B^{nf} <: \upsilon' B^{nf}$.

イロト イポト イヨト イヨト

Higher-Order Calculus Binary methods Properties of **Ob**_{w<:µ} Normal system Basic properties Subject reduction

Basic properties (3/3)

Lemma 20.5-6 (Structural subtyping)

- (1) If $E \vdash Top <: C$, then $E \vdash C \leftrightarrow Top$.
- (2) Let $E \vdash \forall (X <: D:: L)C <: \forall (X <: D':: L')C'.$ Then $L \equiv L', E \vdash D' <: D :: L$, and $E, X <: D':: L \vdash C <: C'.$
- (3) Let $E \vdash [l_i \upsilon_i : B_i^{i \in I}] <: [l_i \upsilon_i' : B_i'^{i \in J}].$

(1) *J* ⊆ *I*.

(2) If $v_j \in \{\circ,+\}$ for some $j \in J$, then $v_j \in \{\circ,+\}$ and $E \vdash B_j <: B_j'$.

(3) If $v_j \in \{\circ, -\}$ for some $j \in J$, then $v_j \in \{\circ, -\}$ and $E \vdash B_j < : B_j$.

(4) Let $E \vdash \mu(X)B\{X\} <: \mu(X')B'\{X'\}$. Then either $E, X \vdash B\{X\} \leftrightarrow B'\{\!\{X\}\!\}$, or $E, X', X <: X' \vdash B\{X\} <: B'\{X'\}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Higher-Order Calculus Binary methods Properties of Ob_{ω<:μ} Normal system Basic properties Subject reduction

Subject reduction theorem

Theorem 20.6-1 (Subject reduction)

If $\phi \vdash a : A$ and $\vdash a \rightsquigarrow v$, then $\phi \vdash v : A$.

Proof

By induction on the derivation of $\vdash a \rightsquigarrow v$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Higher-Order Calculus
Binary methodsNormal system
Basic propertiesProperties of $Ob_{\omega <: \mu}$ Subject reduction

Questions?

・ロ・・師・・师・・問・・日・

Piotr Krzemiński Higher-Order Calculus