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Introduction

we start from Ob1ă:

structure rule for method update and variance annotations
higher-order subtyping, based on Girard’s Fω
finally we obtain Obωă:µ
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Type operators

λpX q@pY ă: X qY

This is example of so-called type operator.
It’s mapping from type X to the type @pY ă: X qY .
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Kinds

A structure of kinds is introduced to classify types and operators (collectively
called constructors).

the kind of all types is called Ty

an operator from types to types has kind Ty ñ Ty

higher-order operators can be expressed as well, such as pTy ñ Tyq ñ Ty

in general, kind K ñ L is the kind of operators mapping kind K to kind L

we write A :: K to say that constructor A has kind K
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Higher-order subtyping

Subtype relation is generalized to a higher-order: the subconstructor (or simply,
inclusion) relation.

on types, it reduces to ordinary subtyping
on operators it is defined as pointwise inclusion:

B ă: B 1 holds at kind K ñ L if for all A of kind K we have BpAq ă: B 1pAq
at kind L

fully we write A ă: B :: K meaning the constructors A and B are both of
kind K and A is included in B

for example, A ă: Top is written in full as A ă: Top :: Ty
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Syntax

X ă: A :: K is general form of
bounds for constructors
bounded universal types and
constructor abstractions
operators have restricted bounds
(of the form X :: K ) to simplify
technical treatment of higher-order
features
we do not include primitive
existential quantifiers nor function
types
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Example

Our initial example of an operator written in full as:

λpX :: Tyq@pY ă: X :: TyqY :: Ty ñ Ty
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Results

Results are described by the following grammar.
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Semantics (1/2)
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Semantics (2/2)
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Judgments
The type rules of Obωă:µ are formulated in terms of following judgments.

E $ AØ B :: K needed because presence of operators entails computation
at constructor level
for example theory implies that pλpX :: Tyq@pY ă: X :: TyqY qpTopq equals
@pY ă: Top :: TyqY
there is no judgment for equivalence of terms
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Notation

Several abbreviations are extensively used to omit some bounds and some kinds.

rK s denotes maximum constructor at kind K
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Environment & Kind formation
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Constructor formation
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Constructor equivalence (1/3)
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Constructor equivalence (2/3)
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Constructor equivalence (3/3)
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Constructor inclusion (1/3)
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Constructor inclusion (2/3)
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Constructor inclusion (3/3)
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Term typing (1/2)
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Term typing (2/2)
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General Self types

so far treatment of Self types was restricted to covariant occurences only in
order to keep subtyping and subsumption working smoothly
we may want to give up certain subtyping properties in exchange for a
treatment of general Self types (without the covariance restriction)
it naturally involves higher-order constructions
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Binary-Tree Objects

generalization of example with
numerals (which can be seen as
unary trees)
two distinct successor functions
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Object-oriented binary trees

we write a.l :“ b for a.l Ø ςpx : Aqb when x R FV pbq
tree with two leaves and joining root: unfoldpleaf q.consLftpleaf q : Bin
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Binary-Tree Classes

We wish to define a class type BinClass, and a class binClass of a type BinClass
that generates trees of type Bin, which methods can be inherited.

An inheriting class could, for example, generate trees with nodes containing
natural numbers. Such tree would have type:

Note that NatBin ă: Bin cannot hold, but we still aim to reuse, for example, the
consLft binary method.
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Notation

We introduce following notation in order to transform the type Bin into a type
operator BinOp.

Op is the kind of simple type operators; it stands for Ty ñ Ty

A ă: B means that A is a suboperator of B ; it stands for A ă: B :: Op

A˚ is the fixpoint of the operator A; it stands for the type µpX qApX q where
A :: Op
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Object-oriented binary-tree operator

the operator BinOp is the object protocol of Bin
the type Bin can be recovered from BinOp by taking a fixpoint
the type UBin is the unfolding of Bin obtained by applying BinOp to Bin
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Object-oriented binary-tree class type

based on notion of parametric pre-methods
types of pre-methods are quantified over the suboperators of BinOp instead
of subtypes of Bin
fixpoints introduced where appropriate to collapse operators down to types
use of ` guarantees that classes cannot be accidentally modified (although
it’s not necessary for the typing of classes)
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Object-oriented binary-tree class
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Inheritance of binary pre-method

We can verify that inheritance of binary pre-method is possible. For example for
the consLft of type @pX ă: BinOpqX ˚ Ñ X ˚ Ñ X ˚, we have:

@pX ă: BinOpqX ˚ Ñ X ˚ Ñ X ˚ ă: @pX ă: BinOp1qX ˚ Ñ X ˚ Ñ X ˚

for any BinOp1 ă: BinOp

A suboperator of BinOp is for example:

NatBinOp ” λpX qrn : Nat, isLeaf : Bool , lft : X , rht : X , consLft : X Ñ X , consRht : X Ñ X s
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Normal system

our main purpose is to proove subject reduction theorem for Obωă:µ
unfortunately, direct proofs on derivations rarely work i Obωă:µ, because the
β rule (Con Eval Beta) introduces expressions of arbitrary shape
we introduce a normal system which lacks that rule, but that is sound and
complete with respect to Obωă:µ over normal forms at the constructor level
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Least upper bounds

Anf is notion of constructor A in normal form
lubE pAq is notion of least upper bound of a constructor A in environment E ,
defined only for terms of the form X pA1q . . . pAnq, for n ě 0
if the immediate bound of X in E is B , then
lubE pX pA1q . . . pAnqq “ BpA1q . . . pAnq
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Least upper bounds and normal forms
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Judgments for the normal system

judgments E $ A ă: B :: K and E $ υA ă: υ1B of Obωă:µ replaced with
E $n A ă: B :: K and E $n υA ă: υ1B

judgment E $ AØ B :: K is dropped to avoid problems caused by
β-equivalence
remaining judgments unchanged
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Normal constructor inclusion (1/2)
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Normal constructor inclusion (2/2)
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Basic properties (1/3)
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Basic properties (2/3)
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Basic properties (3/3)
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Subject reduction theorem
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Questions?
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