
Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Higher-Order Calculus

Piotr Krzemiński

Wrocław, 4th June 2014

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Introduction

we start from Ob1ă:

structure rule for method update and variance annotations
higher-order subtyping, based on Girard’s Fω
finally we obtain Obωă:µ

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Type operators

λpX q@pY ă: X qY

This is example of so-called type operator.
It’s mapping from type X to the type @pY ă: X qY .

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Kinds

A structure of kinds is introduced to classify types and operators (collectively
called constructors).

the kind of all types is called Ty

an operator from types to types has kind Ty ñ Ty

higher-order operators can be expressed as well, such as pTy ñ Tyq ñ Ty

in general, kind K ñ L is the kind of operators mapping kind K to kind L

we write A :: K to say that constructor A has kind K

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Higher-order subtyping

Subtype relation is generalized to a higher-order: the subconstructor (or simply,
inclusion) relation.

on types, it reduces to ordinary subtyping
on operators it is defined as pointwise inclusion:

B ă: B 1 holds at kind K ñ L if for all A of kind K we have BpAq ă: B 1pAq
at kind L

fully we write A ă: B :: K meaning the constructors A and B are both of
kind K and A is included in B

for example, A ă: Top is written in full as A ă: Top :: Ty

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Syntax

X ă: A :: K is general form of
bounds for constructors
bounded universal types and
constructor abstractions
operators have restricted bounds
(of the form X :: K) to simplify
technical treatment of higher-order
features
we do not include primitive
existential quantifiers nor function
types

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Example

Our initial example of an operator written in full as:

λpX :: Tyq@pY ă: X :: TyqY :: Ty ñ Ty

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Results

Results are described by the following grammar.

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Semantics (1/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Semantics (2/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Judgments
The type rules of Obωă:µ are formulated in terms of following judgments.

E $ AØ B :: K needed because presence of operators entails computation
at constructor level
for example theory implies that pλpX :: Tyq@pY ă: X :: TyqY qpTopq equals
@pY ă: Top :: TyqY
there is no judgment for equivalence of terms

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Notation

Several abbreviations are extensively used to omit some bounds and some kinds.

rK s denotes maximum constructor at kind K

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Environment & Kind formation

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor formation

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor equivalence (1/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor equivalence (2/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor equivalence (3/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor inclusion (1/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor inclusion (2/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Constructor inclusion (3/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Term typing (1/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Syntax
Operational Semantics
Typing

Term typing (2/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

General Self types

so far treatment of Self types was restricted to covariant occurences only in
order to keep subtyping and subsumption working smoothly
we may want to give up certain subtyping properties in exchange for a
treatment of general Self types (without the covariance restriction)
it naturally involves higher-order constructions

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Binary-Tree Objects

generalization of example with
numerals (which can be seen as
unary trees)
two distinct successor functions

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Object-oriented binary trees

we write a.l :“ b for a.l Ø ςpx : Aqb when x R FV pbq
tree with two leaves and joining root: unfoldpleaf q.consLftpleaf q : Bin

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Binary-Tree Classes

We wish to define a class type BinClass, and a class binClass of a type BinClass
that generates trees of type Bin, which methods can be inherited.

An inheriting class could, for example, generate trees with nodes containing
natural numbers. Such tree would have type:

Note that NatBin ă: Bin cannot hold, but we still aim to reuse, for example, the
consLft binary method.

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Notation

We introduce following notation in order to transform the type Bin into a type
operator BinOp.

Op is the kind of simple type operators; it stands for Ty ñ Ty

A ă: B means that A is a suboperator of B ; it stands for A ă: B :: Op

A˚ is the fixpoint of the operator A; it stands for the type µpX qApX q where
A :: Op

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Object-oriented binary-tree operator

the operator BinOp is the object protocol of Bin
the type Bin can be recovered from BinOp by taking a fixpoint
the type UBin is the unfolding of Bin obtained by applying BinOp to Bin

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Object-oriented binary-tree class type

based on notion of parametric pre-methods
types of pre-methods are quantified over the suboperators of BinOp instead
of subtypes of Bin
fixpoints introduced where appropriate to collapse operators down to types
use of ` guarantees that classes cannot be accidentally modified (although
it’s not necessary for the typing of classes)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Object-oriented binary-tree class

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

General Self types
Binary-Tree Objects
Binary-Tree Classes

Inheritance of binary pre-method

We can verify that inheritance of binary pre-method is possible. For example for
the consLft of type @pX ă: BinOpqX ˚ Ñ X ˚ Ñ X ˚, we have:

@pX ă: BinOpqX ˚ Ñ X ˚ Ñ X ˚ ă: @pX ă: BinOp1qX ˚ Ñ X ˚ Ñ X ˚

for any BinOp1 ă: BinOp

A suboperator of BinOp is for example:

NatBinOp ” λpX qrn : Nat, isLeaf : Bool , lft : X , rht : X , consLft : X Ñ X , consRht : X Ñ X s

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Normal system

our main purpose is to proove subject reduction theorem for Obωă:µ
unfortunately, direct proofs on derivations rarely work i Obωă:µ, because the
β rule (Con Eval Beta) introduces expressions of arbitrary shape
we introduce a normal system which lacks that rule, but that is sound and
complete with respect to Obωă:µ over normal forms at the constructor level

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Least upper bounds

Anf is notion of constructor A in normal form
lubE pAq is notion of least upper bound of a constructor A in environment E ,
defined only for terms of the form X pA1q . . . pAnq, for n ě 0
if the immediate bound of X in E is B , then
lubE pX pA1q . . . pAnqq “ BpA1q . . . pAnq

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Least upper bounds and normal forms

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Judgments for the normal system

judgments E $ A ă: B :: K and E $ υA ă: υ1B of Obωă:µ replaced with
E $n A ă: B :: K and E $n υA ă: υ1B

judgment E $ AØ B :: K is dropped to avoid problems caused by
β-equivalence
remaining judgments unchanged

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Normal constructor inclusion (1/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Normal constructor inclusion (2/2)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Basic properties (1/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Basic properties (2/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Basic properties (3/3)

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Subject reduction theorem

Piotr Krzemiński Higher-Order Calculus

Higher-Order Calculus
Binary methods

Properties of Obωă:µ

Normal system
Basic properties
Subject reduction

Questions?

Piotr Krzemiński Higher-Order Calculus

	Higher-Order Calculus
	Syntax
	Operational Semantics
	Typing

	Binary methods
	General Self types
	Binary-Tree Objects
	Binary-Tree Classes

	Properties of Ob<:
	Normal system
	Basic properties
	Subject reduction

