
Featherweight Java

Piotr Krzemiński

Wrocław, 9th April 2014

Introduction

”Inside every large language is a small language struggling to get out...”

– T. Hoare

Agenda

1 Featherweight Java

2 Featherweight Generic Java

3 Type erasure

Featherweight Java idea

Provide rigorous calculus to reason about Java’s type system.
completeness vs. compactness
FJ favors compactness over completeness to focus on just a few key
issues
skip most of language features
make formal proof of type soundness simple while still capturing
essence of soundness for full Java

Featherweight Java key concepts

To achieve simplicity, language is reduced
no concurrency
no reflection
no interfaces
no method overloading
no inner classes
no primitive types
no messages to super
no null pointers
no assignment

...so it’s more or less functional subset of Java, only little larger than
classical Church’s λ-calculus

Featherweight Java key concepts

Minimal syntax, containing only
mutually recursive class definitions
object creation
field access
method invocation
method override
method recursion through this
subtyping
casting

...but still legal subset of Java.

Featherweight Java example

class A extends Object {
A() { super(); }

}
class B extends Object {
B() { super(); }

}

class Pair extends Object {
Object fst;
Object snd;
Pair(Object fst, Object snd) {
super(); this.fst = fst; this.snd = snd;

}
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd);

}
}

Featherweight Java example

The expression:
new Pair(new A(), new B()).setfst(new B())

evaluates to expression:
new Pair(new B(), new B())

Featherweight Java syntax

Syntactical shorthands:

we write f for f1, f2, . . . , fn (similarly for C, x, e, etc.)
length of x is #(x)

C f is for C1 f1, . . . ,Cn fn

this.f = f is for this.f1 = f1, . . . , this.fn = fn

Featherweight Java syntax

this is distinguished variable never used as method parameter
supertype in class definition is always included
instance variables should have distinct names from those defined in
superclasses
instance variables cannot be redeclared in subclasses
constructor takes as many parameters as there are instance variables
(including those from superclasses)
casts bind less tightly than other form of expression

Featherweight Java program definition

Class table is mapping from class
names C to class declarations L

FJ program = class table + expression

Featherweight Java subtyping

We may decide this relation by looking at the class table. Class table CT
must satisfy following conditions:

CT(C) = class C . . . for every C ∈ dom(CT)
Object < dom(CT)
for every class name C (except Object) appearing anywhere in CT we
have C ∈ dom(CT)
there are no cycles in subtype relation induced by CT (i.e. <: is
antisymmetric)

Featherweight Java field lookup

Featherweight Java method type lookup

Featherweight Java method body lookup

Featherweight Java typing expressions

an environment Γ is finite mapping from variables to types, written
x : C
obvious shorthands Γ ` e : C and C <: D

Featherweight Java typing casts

Java compiler rejects stupid casts
in FJ stupid casts are present to formulate type soundness in small-step
semantics
its special nature indicated by stupid warning hypothesis
FJ typing corresponds to a legal Java typing only if it does not contain
this rule

Featherweight Java typing methods and classes

Featherweight Java operational semantics

Featherweight Java operational semantics

Featherweight Java properties

Theorem 1 (Subject Reduction)

If Γ ` e : C and e→ e′, then Γ ` e′ : C′ for some C′ <: C.

Theorem 2 (Progress)

Suppose e is a well-typed expression.

If e includes new C0(e).f as a subexpression, then fields(C0) = C f and f ∈ f
for some C and f .
If e includes new C0(e).m(d) as a subexpression, then mbody(m,C0) = x.e0 and
#(x) = #(d) for some x and e0.

Featherweight Java type soundness

To state type soundness formally, we give the definition of values, given by
the following syntax:

v ::= new C(v)

Theorem 3 (FJ Type Soundness)

If ∅ ` e : C and e→∗ e′ with e′ a normal form, then e′ is either a value v with
∅ ` v : D and D <: C, or an expression containing (D) new C(e) where C��<: D.

Featherweight Java cast safety

Expression e is cast-safe in Γ if the type derivations of the underlying class
table and Γ ` e : C contain no downcasts or stupid casts.

Theorem 4 (Reduction Preserves Cast-Safety)

If e is cast-safe in Γ and e→ e′, then e′ is cast-safe in Γ.

Theorem 5 (Progress of Cast-Safety)

Suppose e is cast-safe in Γ. If e has (C) new C0(e) as a subexpression, then C0 <: C.

Corollary 6 (No Typecast Errors in Cast-Safe programs)

If e is cast-safe in ∅ and e→∗ e′ with e′ a normal form, then e′ is a value v.

Featherweight Generic Java

Extension of Featherweight Java:
FGJ = FJ + generic types
type-parametrizable classes and methods
two possible implementations:

type passing
type erasure

Featherweight Generic Java example

class A extends Object {
A() { super(); }

}
class B extends Object {
B() { super(); }

}

class Pair<X extends Object, Y extends Object> extends Object {
X fst;
Y snd;
Pair(X fst, Y snd) {
super(); this.fst = fst; this.snd = snd;

}
<Z extends Object> Pair<Z, Y> setfst(Z newfst) {
return new Pair<Z, Y>(newfst, this.snd);

}
}

Featherweight Generic Java example

The expression:
new Pair<A, B>(new A(), new B()).setfst(new B())

evaluates to expression:
new Pair<B, B>(new B(), new B())

while FJ is subset of Java, FGJ is not quite a subset of GJ

in GJ type inference of type parameters in generic method invocation is obligatory

for example e.m<A,B>(x) parses to two expressions e.m<A and B>(x) separated by a
comma

Featherweight Generic Java syntax

C is abbreviation of keyword extends
we allow C<> and m<> to be abbreviated as C and m
the bound of type variable may be type expression, even recursive!
(<X extends C<X>>)
...or mutually recursive if there are several bounds (<X extends
C<Y>, Y extends D<X>>)

Featherweight Generic Java subclassing

subclassing , subtyping
subclassing is relation between class names

Featherweight Generic Java field lookup

Featherweight Generic Java method type lookup

Featherweight Generic Java method body lookup

Featherweight Generic Java bound of type

∆ is finite mapping from type variables to nonvariable types, written
X <: N
we write bound∆(T) for upper bound of T in ∆

Featherweight Generic Java subtyping

type parameters are invariant with regard to subtyping
type parameter can be both argument and result type of method
∆ ` T <: U does not imply ∆ ` C < T > <: C < U >

Featherweight Generic Java well formed types

we perform a simultaneous substitution, permitting recursion and
mutual recursion between variables and bounds
type environment ∆ is well formed if ∆ ` ∆(X) ok for all X ∈ dom(∆)
environment Γ is well formed with respect to ∆, written ∆ ` Γ ok, if
∆ ` Γ(x) ok for all x ∈ dom(Γ)

Featherweight Generic Java typing expressions

Featherweight Generic Java typing casts

dcast ensures us that the result of the cast does not depend on reduction
semantics used (type passing or type erasure).

Featherweight Generic Java typing casts

class List<X extends Object> extends Object { ... }
class LinkedList<X extends Object> extends List<X> { ... }

if o has type Object, then (List<C>)o is not permitted

if at runtime o is bound to new List<D>(), then cast would fail in the type-passing
semantics, but succeed in the erasure semantics, since (List<C>)o erases to (List)o,
while both new List<C>() and new List<D>() erases to new List()

if cl has type List<C>, then cast (LinkedList<C>)cl is permitted, since the
type-passing and erased versions of the cast are guaranteed to either both succeed or
both fail

Featherweight Generic Java typing methods and classes

in FGJ unlike to FJ, covariant overriding on the method result type is
allowed

Featherweight Generic Java operational semantics

Featherweight Generic Java operational semantics

Featherweight Generic Java properties

Theorem 7 (Subject Reduction)

If ∆; Γ ` e : T and e→ e′, then ∆; Γ ` e′ : T′ for some T′ such that ∆ ` T′ <: T.

Theorem 8 (Progress)

Suppose e is a well-typed expression.

If e includes new N0(e).f as a subexpression, then fields(N0) = T f and f ∈ f
for some T and f .
If e includes new N0(e).m < V > (d) as a subexpression, then
mbody(m < V >,N0) = x.e0 and #(x) = #(d) for some x and e0.

Featherweight Generic Java type soundness

As we did for FJ, we will give the definition of FGJ values:

w ::= new N(w)

Theorem 9 (FGJ Type Soundness)

If ∅; ∅ ` e : T and e→∗ e′ with e′ a normal form, then e′ is either an FGJ value w
with ∅; ∅ ` w : S and ∅ ` S <: T, or an expression containing (P) new N(e) where
∅ ` N ��<: P.

Featherweight Generic Java backward compatibility

Intuitively, FGJ can be used to typecheck and execute FJ programs without
changing their meanings.

Lemma 10

If CT is an FJ class table, then fieldsFJ(C) = fieldsFGJ(C) for all C ∈ dom(CT).

Lemma 11

Suppose CT is an FJ class table. Then mtypeFJ(m,C) = C→ C if and only if
mtypeFGJ(m,C) = C→ C. Similarly, mbodyFJ(m,C) = x.e if and only if
mbodyFGJ(m,C) = x.e

Featherweight Generic Java backward compatibility

Theorem 12 (Backward Compatibility)

If an FJ program (e,CT) is well typed under FJ, then is is also well typed under
FGJ. Moreover, for all FJ programs e and e′ (whether well typed or not) e→FJ e′ if
and only if e→FGJ e′.

Type erasure idea

Idea is to translate FGJ expression to FJ with erasing all information about
type parameters.

That’s the way how generics are implemented in JVM.

Type erasure example

Class Pair<X, Y> from previous example erases to the following:
class Pair extends Object {
Object fst;
Object snd;
Pair(Object fst, Object snd) {
super(); this.fst = fst; this.snd = snd;

}
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd);

}
}

Type erasure example

Similarly, the field selection:
new Pair<A, B>(new A(), new B()).snd

erases to:
(B) new Pair(new A(), new B()).snd

downcast (B) is inserted to recover type information from the original program

we call such downcasts inserted by erasure syntetic

we would want them not to fail at runtime ;)

Type erasure erasure of types

|T|∆ = C

where
bound∆(T) = C < T >

Type erasure auxilliary functions

If fieldsmax(C) = D f , then fieldsmax(C)(fi) = Di.

Type erasure auxilliary functions

Type erasure erasure of expressions

Type erasure erasure of expressions

Type erasure erasure of methods and classes

Type erasure properties

Theorem 13 (Erasure Preserves Typing)

If an FGJ class table CT is ok and ∆; Γ `FGJ e : T, then |CT| is ok using the FJ
typing rules and |Γ|∆ `FJ |e|∆;Γ : |T|∆. Moreover, every synthetic cast in |CT| and
|e|∆;Γ does not involve a stupid warning.

Type erasure properties

We would intuitively expect that erasure from FGJ to FJ preserves
reduction behaviour of FGJ programs, as in the diagram below.

Type erasure properties

This is actually not quite true. Let’s pick:

e = new Pair < A, B > (a, b).fst
|e| = (A)s new Pair(|a|, |b|).fst

e→∗FGJ a, but |e| →∗FJ (A)s
|a|

In this example, FJ expression reduced from |e| has more synthetic casts
than |e′|. This is not always the case.

Type erasure properties

In the example below:

e = new Pair < A, B > (a, b).setfst < B > (b′)
|e| = new Pair(|a|, |b|).setfst(|b′|)

e→∗FGJ new Pair < B, B > (b′, new Pair < A, B > (a, b).snd)
|e| →∗FJ new Pair(|b

′
|, new Pair(|a|, |b|).snd

which has fewer synthetic casts than

new Pair(|b′|, (B)s new Pair(|a|, |b|).snd)

Type erasure properties

Definition 14 (Expression expansion)

Suppose Γ `FJ e : C. Let us call d an expansion of e under Γ, written
Γ ` e

exp
=⇒ d if d is obtained from e by some combination of:

addition zero or more synthetic upcasts,
replacement of some synthetic casts (D)s with (C)s where D <: C,
removal of some synthetic casts

...and Γ `FJ d : D for some D.

Type erasure properties

Theorem 15 (Erasure Preserves Reduction Modulo Expansion)

If ∆; Γ ` e : T and e→∗FGJ e′, then there exists some expression d′ such that

|Γ|∆ ` |e′|∆,Γ
exp
=⇒ d′ and |e|∆,Γ →∗FJ d′.

Type erasure properties

Theorem 16 (Erased Program Reflects FGJ Execution)

Suppose that ∆; Γ ` e : T and |Γ|∆ ` |e|∆,Γ
exp
=⇒ d. If d reduces to d′ with zero or more

steps by removing synthetic casts, followed by one step by other kinds of reduction,
then e→FGJ e′ for some e′ and |Γ|∆ ` |e′|∆,Γ

exp
=⇒ d′.

Type erasure properties

Corollary 17 (Erasure Preserves Execution Results)

If ∆; Γ ` e : T and e→∗FGJ w, then |e|∆,Γ →∗FJ |w|∆,Γ. Similarly, if ∆,Γ ` e : T and
|e|∆,Γ →∗FJ v, then there exists an FGJ value w such that e→∗FGJ w and |w|∆,Γ = v.

Type erasure properties

Corollary 18 (Erasure Preserves Typecast Errors)

If ∆; Γ ` e : T and e→∗FGJ e′, where e′ has a stuck subexpression
(C < S >) new D < T > (e), then |e|∆,Γ →∗FJ d′ such that d′ has a stuck

subexpression (C) new D(d), where d are expansions of the erasures of e, at the same
position (modulo synthetic casts) as the erasure of e′.

Similarly, if ∆,Γ ` e : T and |e|∆,Γ →∗FJ e′, where e′ has a stuck subexpression
(C) new D(d), then there exists an FGJ expression d such that e→∗FGJ d and

|Γ|∆ ` |d|∆,Γ
exp
=⇒ e′ and d has a stuck subexpression (C < S >) new D < T > (d),

where e are expansions of the erasures of d, at the same position (modulo synthetic
casts) as e′.

The end

That’s all for today. Questions?

Homework

You have to implement:
typechecker for FJ
evaluator for FJ
type erasure (translation from FGJ to FJ)
...glue it all together, provide some examples

Any functional language (Haskell, OCaml, Scala, F#, ...)

	Featherweight Java
	Featherweight Generic Java
	Type erasure

